OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5829–5844

Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics

Katie Morzinski, Bruce Macintosh, Donald Gavel, and Daren Dillon  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5829-5844 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming “extreme” AO instrument. High-order “tweeter” and low-order “woofer” deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the “dark hole” region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-μm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r0 =10–15 cm. The MEMS when solitary suffered saturation ~4% of the time. Simulating a woofer DM with ~5–10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(350.1260) Other areas of optics : Astronomical optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Adaptive Optics

Original Manuscript: January 23, 2009
Revised Manuscript: March 13, 2009
Manuscript Accepted: March 14, 2009
Published: March 26, 2009

Katie Morzinski, Bruce Macintosh, Donald Gavel, and Daren Dillon, "Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics," Opt. Express 17, 5829-5844 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Marois, B. Macintosh, T. Barman, B. Zuckerman, I. Song, J. Patience, D. Lafreniere, and R. Doyon, "Direct imaging of multiple planets orbiting the star HR 8799," Science 322,1348-1352 (2008). [CrossRef] [PubMed]
  2. P. Kalas, J. R. Graham, E. Chiang, M. P. Fitzgerald, M. Clampin, E. S. Kite, K. Stapelfeldt, C. Marois, and J. Krist, "Optical Images of an Exosolar Planet 25 Light-Years from Earth," Science 322,1345-1348 (2008). [CrossRef] [PubMed]
  3. A.-M. Lagrange, D. Gratadour, G. Chauvin, T. Fusco, D. Ehrenreich, D. Mouillet, G. Rousset, D. Rouan, F. Allard, ´ E. Gendron, J. Charton, L. Mugnier, P. Rabou, J. Montri, and F. Lacombe, "A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L’-band imaging," Astron. Astrophys. 493, L21-L25 (2009). [CrossRef]
  4. C. Marois, D. Lafreniere, R. Doyon, B. Macintosh, and D. Nadeau, "Angular Differential Imaging: A powerful high-contrast imaging technique," Astrophys. J. 641, 556-564 (2006). [CrossRef]
  5. B. A. Macintosh, J. R. Graham, D. W. Palmer, R. Doyon, J. Dunn, D. T. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, J. K. Wallace, B. Bauman, D. A. Erickson, C. Marois, L. A. Poyneer, and R. Soummer, "The Gemini Planet Imager: From science to design to construction," Proc. SPIE 7015, 701518 (2008). [CrossRef]
  6. P. Kalas, "GPI: Gemini Planet Imager," http://gpi.berkeley.edu.
  7. S. A. Cornelissen, P. A. Bierden, T. G. Bifano, "A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging," Proc. SPIE 6888, 68880V-1-10 (2008). [CrossRef]
  8. K. M. Morzinski, D. T. Gavel, A. P. Norton, D. R. Dillon, and M. R. Reinig, "Characterizing MEMS deformable mirrors for open-loop operation: High-resolution measurements of thin-plate behavior," Proc. SPIE 6888, 68880S (2008). [CrossRef]
  9. K. M. Morzinski, J. W. Evans, S. Severson, B. Macintosh, D. Dillon, D. Gavel, C. Max, and D. Palmer, "Characterizing the potential of MEMS deformable mirrors for astronomical adaptive optics," Proc. SPIE 6272, 627221 (2006). [CrossRef]
  10. J. W. Evans, B. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, and L. Reza, "Demonstrating sub-nm closed loop MEMS flattening," Opt. Express 14, 5558-5570 (2006). [CrossRef] [PubMed]
  11. J. W. Evans, K. Morzinski, L. Reza, S. Severson, L. Poyneer, B. A. Macintosh, D. Dillon, G. Sommargren, D. Palmer, D. Gavel, and S. Olivier, "Extreme adaptive optics testbed: High contrast measurements with a MEMS deformable mirror," Proc. SPIE 5905, 59050Y (2005). [CrossRef]
  12. D. Gavel, S. Severson, B. Bauman, D. Dillon, M. Reinig, C. Lockwood, D. Palmer, K. Morzinski, M. Ammons, E. Gates, and B. Grigsby, "Villages: An on-sky visible wavelength astronomy AO experiment using a MEMS deformable mirror," Proc. SPIE 6888, 688804 (2008). [CrossRef]
  13. D. Gavel, M. Ammons, B. Bauman, D. Dillon, E. Gates, B. Grigsby, J. Johnson, C. Lockwood, K. Morzinski, D. Palmer, M. Reinig, and S. Severson, "Visible light laser guidestar experimental system (Villages): On-sky tests of new technologies for visible wavelength all-sky coverage adaptive optics systems," Proc. SPIE 7015, 70150G (2008). [CrossRef]
  14. F. Malbet, J. W. Yu, and M. Shao, "High-dynamic-range imaging using a deformable mirror for space coronography," Publ. Astron. Soc. Pac. 107, 386-398 (1995). [CrossRef]
  15. R. Soummer, "Apodized pupil Lyot coronagraphs for arbitrary telescope apertures," Astrophys. J.  618, L161- L164 (2005). [CrossRef]
  16. S. J. Thomas, R. Soummer, D. Dillon, B. Macintosh, J. W. Evans, D. Gavel, A. Sivaramakrishnan, C. Marois, and B. R. Oppenheimer, "Testing the APLC on the LAO ExAO testbed," Proc. SPIE 7015, 701561 (2008).
  17. K. M. Morzinski, B. A. Macintosh, D. Dillon, D. Gavel, D. Palmer, and A. Norton, "Empirical measurement of MEMS stroke saturation, with implications for woofer-tweeter architectures," Proc. SPIE 7015, 70153N-70153N-12 (2008b). [CrossRef]
  18. A. Norton, J. W. Evans, D. Gavel, D. Dillon, D. Palmer, B. Macintosh, K. Morzinski, S. Cornelissen, "Preliminary characterization of Boston Micromachines’ 4096-actuator deformable mirror," Proc. SPIE 7209, 720916 (2009).
  19. S. A. Severson, Department of Physics and Astronomy, Sonoma State University, 300L Darwin Hall, Rohnert Park, CA 94928, (personal communication, 2006).
  20. V. I. Tatarski, Wave propagation in a turbulent medium (McGraw-Hill Book Company, Inc., 1961).
  21. J. W. Hardy, "Instrumental limitations in adaptive optics for astronomy," Proc. SPIE 1114, 2-13 (1989).
  22. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  23. R. Hudgin, "Wave-front compensation error due to finite corrector-element size," J. Opt. Soc. Am. 67, 393-395 (1977). [CrossRef]
  24. J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, 1998).
  25. R. Conan, "Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials," J. Opt. Soc. Am. A 25, 526-536 (2008). [CrossRef]
  26. J.-F. Lavigne and J.-P. Veran, "Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor," J. Opt. Soc. Am. A 25, 2271-2279 (2008). [CrossRef]
  27. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon and L. S. Bradsher, "100-picometer interferometry for EUVL," Proc. SPIE 4688, 316-328 (2002). [CrossRef]
  28. J. W. Evans, K. Morzinski, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, L. Reza, D. Gavel, D. Palmer, S. Olivier, and P. Bierden, "Extreme adaptive optics testbed: Performance and characterization of a 1024-MEMS deformable mirror," Proc. SPIE 6113, 61130I (2006). [CrossRef]
  29. S. A. Severson, B. Bauman, D. Dillon, J. Evans, D. Gavel, B. Macintosh, K. Morzinski, D. Palmer, and L. Poyneer, "The extreme adaptive optics testbed at UCSC: Current results and coronagraphic upgrade," Proc. SPIE 6272, 62722J (2006). [CrossRef]
  30. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, C. Blain, "Distributed modal command for a twodeformable-mirror adaptive optics system," Appl. Opt. 46, 4329-4340 (2007). [CrossRef] [PubMed]
  31. K. Morzinski, K. B. W. Harpsøe, D. Gavel, S. M. Ammons, "The open-loop control of MEMS: Modeling and experimental results," Proc. SPIE 6467, 64670G (2007). [CrossRef]
  32. C. R. Vogel and Q. Yang, "Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror," J. Opt. Soc. Am. A 23, 1074-1081 (2006). [CrossRef]
  33. J. B. Stewart, A. Diouf, Y. Zhou, and T. G. Bifano, "Open-loop control of a MEMS deformable mirror for largeamplitude wavefront control," J. Opt. Soc. Am. A 24, 3827-3833 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited