OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6053–6058

Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers

Jong-Dae Park, Aaron MKay, and Judith M. Dawes  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6053-6058 (2009)
http://dx.doi.org/10.1364/OE.17.006053


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our anisotropic rate equation model outlines the relationship between the relaxation dynamics in a four-level solid-state laser and its anisotropic gain properties. Anisotropic pump rates and stimulated emission cross-sections were included to account for specific atom orientations in the gain material. The model is compared with experimental measurements of two relaxation oscillation frequencies which are related to the anisotropic atom-laser interaction in orthogonally polarized dual-mode lasers. The model predicts that crystal orientation and pump polarization affect the laser operation characteristics, as found experimentally. The gain anisotropy influences the fast laser dynamics, as in single-mode relaxation oscillations.

© 2009 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 27, 2009
Revised Manuscript: March 15, 2009
Manuscript Accepted: March 27, 2009
Published: March 31, 2009

Citation
Jong-Dae Park, Aaron M. McKay, and Judith M. Dawes, "Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers," Opt. Express 17, 6053-6058 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963). [CrossRef]
  2. K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990). [CrossRef] [PubMed]
  3. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992). [CrossRef] [PubMed]
  4. S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992). [CrossRef] [PubMed]
  5. T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000). [CrossRef]
  6. A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007). [CrossRef]
  7. A. McKay, J. M. Dawes, and J. D. Park, "Polarization-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007). [CrossRef] [PubMed]
  8. Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004). [CrossRef]
  9. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 µm," Opt. Lett. 30, 2418-2420 (2005). [CrossRef] [PubMed]
  10. C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005). [CrossRef]
  11. B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001). [CrossRef]
  12. M. Sargent, III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Massachusetts, 1974).
  13. M. Alouini, F. Bretenaker, M. Brunel, A. Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000). [CrossRef]
  14. E. Lacot and F. Stoeckel, "Nonlinear mode coupling in a microchip laser," J. Opt. Soc. Am. B 13, 2034-2040 (1996). [CrossRef]
  15. P. Dekker and J. M. Dawes, "Pulsed output from a dual-polarization cw diode-pumped Nd:YAG laser," J. Opt. Soc. Am. B 15, 247-251 (1998). [CrossRef]
  16. Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004). [CrossRef]
  17. I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006). [CrossRef]
  18. K. Otsuka, "Oscillation properties of anisotropic lasers," IEEE J. Quantum Electron. 14, 49-55 (1978). [CrossRef]
  19. H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995). [CrossRef] [PubMed]
  20. M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999). [CrossRef]
  21. P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997). [CrossRef]
  22. J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, "A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber," J. Lightwave Technol. 16, 200-206 (1998). [CrossRef]
  23. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998). [CrossRef]
  24. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998). [CrossRef]
  25. J. Degnan, "Theory of optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989). [CrossRef]
  26. R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999). [CrossRef]
  27. K. J. Weingarten, B. Braun, and U. Keller, "In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements," Opt. Lett. 19, 1140-1142 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited