OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6128–6133

A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal

Daniel Stieler, Anthony Barsic, Rana Biswas, Gary Tuttle, and Kai-Ming Ho  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6128-6133 (2009)
http://dx.doi.org/10.1364/OE.17.006128


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact planar channel four-port drop filter is developed experimentally and theoretically in the three-dimensional woodpile photonic crystal having a complete band gap. This consists of two waveguides separated by a defect in a single layer of the photonic crystal. Frequencies for channel dropping can be tuned throughout the band gap, by changing the size of the defect. Quality factors of ~1000 were measured. Simulations demonstrate directional energy transfer between the input and out put waveguides, through excitation of fields in the defect region. The planar nature of the filter is much more amenable to fabrication at optical length wavelengths.

© 2009 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

History
Original Manuscript: December 23, 2008
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 12, 2009
Published: April 1, 2009

Citation
Daniel Stieler, Anthony Barsic, Rana Biswas, Gary Tuttle, and Kai-Ming Ho, "A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal," Opt. Express 17, 6128-6133 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovich, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004). [CrossRef]
  3. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide," J. Lightwave Technol. 20, 873-878 (2002). [CrossRef]
  4. P. Kohli, J. Chatterton, D. Stieler, G. Tuttle, M. Li, X. Hu, Z. Ye, and K. M. Ho, "Fine tuning resonant frequencies for a single cavity defect in three-dimensional layer-by-layer photonic crystal," Opt. Express 16, 19844-19849 (2008). [CrossRef]
  5. G. Subramania, S.Y. Lin, J. R. Wendt, and J. M. Rivera, "Tuning the microcavity resonant wavelength in a two-dimensional photonic crystal by modifying the cavity geometry," Appl. Phys. Lett. 83, 4491-4494 (2003). [CrossRef]
  6. P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.M. Ho, "Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities," Appl. Phys. Lett. 89, 0231103-0231106 (2006). [CrossRef]
  7. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, "Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity," Opt. Express 14, 2446-2458 (2006). [CrossRef]
  8. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section," Opt. Express 13, 3037-3048 (2005). [CrossRef] [PubMed]
  9. R. J. Liu, Z. F. Feng, and Z. Y. Li, "Channel drop filters in 3D photonic crystal," in Proceedings of IEEE International Symposium on Biophotonics, Nanophotonics and Metamaterials. (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 398-401.
  10. A. Martinez, J. Martí, J. Bravo-Abad, and J. Sanchez-Dehesa, "Wavelength demultiplexing structure based on coupled-cavity waveguides in photonic crystals," Fiber Integr. Opt. 22, 151-160 (2003).
  11. G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, "2D photonic crystal cavity-based WDM multiplexer," in Proceedings of IEEE International Conference on Transparent Optical Networks. (Institute of Electrical and Electronic Engineers, New York, 2006), 4, pp. 233-236.
  12. C. Jin, N. P. Johnson, M. H. Chong, A. S. Jugessur, S. Day, D. Gallagher, and R. M. De La Rue, "Transmission of photonic crystal coupled-resonator waveguide (PhCCRW structure enhanced via mode matching," Opt. Express 13, 2295-2300 (2005). [CrossRef] [PubMed]
  13. M. Okano, S. Kako, and S. Noda, "Coupling between a point-defect and a line-defect waveguide in three-dimensional photonic crystal," Phys. Rev. B. 68, 235110 (2003). [CrossRef]
  14. M. Bayindir and E. Ozbay, "Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures," Appl. Phys. Lett. 81, 4514-4516 (2003). [CrossRef]
  15. R.-J. Liu, Z.-Y. Li, Z.-F. Feng, B.-Y. Cheng, and D.-Z. Zhang, "Channel-drop filters in three-dimensional woodpile photonic crystals," J. Appl. Phys. 103, 094514 (2008) [CrossRef]
  16. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994). [CrossRef]
  17. A. Tavlove and S. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322 (1999). [CrossRef]
  19. S. Noda, A. Chutinan, and S. Noda, "Design for waveguides in 3-dimensional photonic crystals," Jpn. J. Appl. Phys. 39, 2353 (2000). [CrossRef]
  20. Z.Y. Li and K. M. Ho, "Waveguides in 3-dimensional layer-by-layer photonic crystals," J. Opt. Soc. Am. B 5, 801 (2001).
  21. C. Sell, C. Christensen, G. Tuttle, Z. Y. Li, and K. M. Ho, "Propagation loss in three-dimensional photonic crystal waveguides with imperfect confinement," Phys. Rev. B 68, 113106 (2003). [CrossRef]
  22. Y. F. Chau, T. J. Yang, and W. D. Lee, "Coupling technique for efficient interfacing between silica waveguides and planer photonic crystal circuits," Appl. Opt. 43, 6656 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited