OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6194–6202

Laser gate: multi-MeV electron acceleration and zeptosecond e-bunching

A. E. Kaplan and A. L. Pokrovsky  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6194-6202 (2009)
http://dx.doi.org/10.1364/OE.17.006194


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relativistically-intense laser beam with large field gradient (“laser gate”) enables strong inelastic scattering of electrons crossing the beam. This process allows for multi-MeV electron net acceleration per pass within the wavelength space. Inelastic scattering even in low-gradient laser field may also induce extremely tight temporal focusing and electron bunch formation down to quantum, zepto-second limit.

© 2009 Optical Society of America

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 3, 2009
Revised Manuscript: March 27, 2009
Manuscript Accepted: March 28, 2009
Published: April 1, 2009

Citation
Alexander E. Kaplan and Alexander L. Pokrovsky, "Laser Gate: Multi-MeV electron acceleration and zeptosecond e-bunching," Opt. Express 17, 6194-6202 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. H. Boot and R. B. R-S. Harvie, "Charged particles in a non-uniform radio-frequency field," Nature 180, 1187-1187 (1957). [CrossRef]
  2. A. V. Gaponov and M. A. Miller, "Potential wells for charged particles in a high-frequency electromagnetic field," Sov. Phys. JETP 7, 168-169 (1958).
  3. T. W. B. Kibble, "Refraction of electron beams by intense electromagnetic waves," Phys. Rev. Lett. 16, 1054-1056 (1966). [CrossRef]
  4. M. V. Fedorov, "Stimulated scattering of electrons by photons and adiabatic switching on hypothesis," Opt. Commun. 12, 205-209 (1974). [CrossRef]
  5. A. E. Kaplan and A. L. Pokrovsky, "Fully relativistic theory of the ponderomotive force in an ultraintense standing wave," Phys. Rev. Lett. 95, 053601(1-4) (2005). [CrossRef] [PubMed]
  6. A. L. Pokrovsky and A. E. Kaplan, "Relativistic reversal of the ponde.romotive force in a standing laser wave," Phys. Rev. A 72, 043401(1-12) (2005). [CrossRef]
  7. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, "Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels," Phys. Rev. Lett. 83, 4772-4775 (1999). [CrossRef]
  8. C. G. R. Geddes, C. Toth C, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004). [CrossRef] [PubMed]
  9. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, "A laser-plasma accelerator producing monoenergetic electron beams," Nature 431, 541-544 (2004). [CrossRef] [PubMed]
  10. M. J. Hogan, C. D. Barnes, and C. F. Clayton, "Multi-GeV energy gain in a plasma-wakefield accelerator," Phys. Rev. Lett. 95, 054802(1-4) (2005). [CrossRef] [PubMed]
  11. G. Shvets, "Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability,"Phys. Rev. Lett. 93, 195004(1-4) (2004). [CrossRef] [PubMed]
  12. We neglect here the "radiation friction" force on electron; this was supported by all our estimates and numerical simulations for the specific situation. The time for an electron to pass through the laser gate is very short, and for the radiation friction to affect the motion, one needs ©¡« 102-103, which is beyond the domain of interest. Also, when addressing the EM-electron interaction, we use classical approach, since in the cases of interest, a typical number of photons absorbed by an electron per pass, is of the order of mc2/¯h?¡« 106.
  13. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, New-York, 1984), p. 312.
  14. R. H. Varian and S. F. Varian, "A High Frequency Oscillator and Amplifier," J. Appl. Phys. 10, 321-327 (1939). [CrossRef]
  15. D. L. Webster, "Cathode-Ray Bunching," J. Appl. Phys. 10, 501-508 (1939). [CrossRef]
  16. W. W. Hansen, "A Type of Electrical Resonator," J. Appl. Phys. 9, 654-663 (1938). [CrossRef]
  17. W. W. Hansen and R. D. Richtmyer, "On Resonators Suitable for Klystron Oscillators," J. Appl. Phys. 10, 189-199 (1939). [CrossRef]
  18. It would be a challenging but greatly rewarding endeavor to develop Hansen-like resonators for optical domain; there is no physical restriction on the size of the field inhomogeneity ?L.
  19. M. Born and E. Wolf, Principles of Optics, Pergamon Press, 6th Ed. 1980, p. 127.
  20. A. E. Kaplan, "Relativistic nonlinear optics of a single cyclotron electron," Phys. Rev. Lett. 56, 456-459 (1986) [CrossRef] [PubMed]
  21. A. E. Kaplan and Y. J. Ding, "Hysteretic and multiphoton optical resonances of a single cyclotron electron," IEEE J. Quantum Electron. 24, 1470-1482 (1988). [CrossRef]
  22. W. Becker and J. K. McIver, "Classical theory of stimulated C?erenkov radiation," Phys. Rev. A 31, 783-789 (1985). [CrossRef] [PubMed]
  23. A. E. Kaplan and S. Datta, "Extreme-ultraviolet and X-ray Emission and Amplification by Non-relativistic Beams Traversing a Superlattice," Appl. Phys. Lett. 44, 661-663 (1984) [CrossRef]
  24. S. Datta and A. E. Kaplan, "Quantum Theory of Spontaneous and Stimulated Resonant Transition Radiation," Phys. Rev. A. 31, 790-796 (1985). [CrossRef] [PubMed]
  25. A. E. Kaplan and P. L. Shkolnikov, "Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts," Phys. Rev. Lett.  88, 074801(1-4) (2002). [CrossRef] [PubMed]
  26. V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, "Space-charge distribution across internal interfaces in electroceramics using electron holography," J. Am. Ceram. Soc. 80, 1117-1130 (1997). [CrossRef]
  27. Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics, v. 2: The structure and Evolution of the Universe, (The Univ. Chicago Press, Chicago, 1983) p. 361.
  28. A. E. Kaplan, B. Y. Dubetsky, and P. L. Shkolnikov, "Shock-shells in Coulomb explosion of nanoclusters," Phys. Rev. Lett. 91, 143401(1-4) (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited