OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6218–6223

Spatial filtering by using cascading plasmonic gratings

Chih-Ming Wang, Yia-Chung Chang, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6218-6223 (2009)
http://dx.doi.org/10.1364/OE.17.006218


View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, the optical properties of a plasmonic multilayer structure, consisting of tw6o longitudinally cascaded gratings with a half pitch off-set, are investigated. The proposed structure, which is a system mixing extended and localized surface plasmon, forms transversely cascaded metal/insulator/metal cavities. The angle dependent reflection spectrum of the proposed structure displays a resonance peak at a specific angle. The full-width at half maximum (FWHM) of the resonant peak is smaller than 3°. The angular dispersion of the cascading plamonic gratings is about dθ/dλ, =0.15 °/nm. The cascading plasmonic gratings can be used as a spatial filter to improve the spatial coherence of a light source.

© 2009 Optical Society of America

OCIS Codes
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: February 20, 2009
Revised Manuscript: March 30, 2009
Manuscript Accepted: March 31, 2009
Published: April 1, 2009

Citation
Chih-Ming Wang, Yia-Chung Chang, and Din Ping Tsai, "Spatial filtering by using cascading plasmonic gratings," Opt. Express 17, 6218-6223 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008). [CrossRef]
  2. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007). [CrossRef] [PubMed]
  3. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003). [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  5. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006). [CrossRef]
  6. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  7. Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007). [CrossRef]
  8. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008). [CrossRef] [PubMed]
  9. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200. (2005). [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express,  13, 4922-4930. (2005). [CrossRef] [PubMed]
  11. S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006). [CrossRef] [PubMed]
  12. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008). [CrossRef] [PubMed]
  13. Y. Wang, ‘‘Wavelength selection with coupled surface plasmon waves,’’ Appl. Phys. Lett. 82, 4385-4387 (2003). [CrossRef]
  14. J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007). [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited