OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6283–6292

Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques

Jorge Albero, Lukasz Nieradko, Christophe Gorecki, Heidi Ottevaere, Virginia Gomez, Hugo Thienpont, Juha Pietarinen, Birgit Päivänranta, and Nicolas Passilly  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6283-6292 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel process technology of hemispherical shaped microlenses, using isotropic wet etching of silicon in an acid solution to produce the microlenses molds. Governed by process parameters such as temperature and etchant concentration, the isotropic wet etching is controlled to minimize various defects that appear during the molding creation. From the molds, microlenses are fabricated in polymer by conventional replication techniques such as hot embossing and UV-molding. The characterization of molds and measurements of replicated microlenses demonstrate high smoothness of the surfaces, excellent repeatability of mold fabrication and good optical properties. Using the proposed method, a wide range of lens geometries and lens arrays can be achieved.

© 2009 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 12, 2008
Revised Manuscript: February 24, 2009
Manuscript Accepted: February 27, 2009
Published: April 2, 2009

Jorge Albero, Lukasz Nieradko, Christophe Gorecki, Heidi Ottevaere, Virginia Gomez, Hugo Thienpont, Juha Pietarinen, Birgit Päivänranta, and Nicolas Passilly, "Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques," Opt. Express 17, 6283-6292 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998). [CrossRef]
  2. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, "Rod and spherical silica microlenses fabricated by CO2 laser melting," Appl. Opt. 44, 4547-4556 (2005). [CrossRef] [PubMed]
  3. A. Y. Yi and L. Li, "Design and fabrication of a microlens array by use of a slow tool servo," Opt. Lett. 30, 1707-1709 (2005). [CrossRef] [PubMed]
  4. L. Jiang, T. Huang, C. Chiu, C. Chang, and S. Yang, "Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist," Opt. Express 15, 12088-12094 (2007). [CrossRef] [PubMed]
  5. Z. Popovic, R. Sprague, and G. A. Neville Conell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 23, 1281-1284 (1988). [CrossRef]
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731-733 (2003). [CrossRef] [PubMed]
  7. M. Kubo and M. Hanabusa, "Fabrication of microlenses by laser chemical vapor deposition," Appl. Opt. 29, 2755-2759 (1990). [CrossRef] [PubMed]
  8. H. Hisakuni and K. Tanaka, "Optical fabrication of microlenses in chalcogenide glasses," Opt. Lett. 20, 958-960 (1995). [CrossRef] [PubMed]
  9. B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, "Single-step fabrication of refractive microlens arrays," Appl. Opt. 36, 2198-2202 (1997). [CrossRef] [PubMed]
  10. H. P. Herzig, Micro-Optics. Elements, Systems and Applications (Taylor & Francis, 1997).
  11. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin "Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si," Opt. Express 11, 2244-2252 (2003). [CrossRef] [PubMed]
  12. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, "Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication," J. Micromech. Microeng. 15, 873-882 (2005). [CrossRef]
  13. H. Robbins and B. Schwartz, "Chemical etching of Silicon I," J. Electrochem. Soc. 106, 505-508 (1959). [CrossRef]
  14. H. Robbins and B. Schwartz, "Chemical etching of Silicon II," J. Electrochem. Soc. 107, 108-111 (1960). [CrossRef]
  15. H. Robbins and B. Schwartz, "Chemical etching of Silicon III," J. Electrochem. Soc. 108, 365-372 (1961). [CrossRef]
  16. B.-K. Lee, D. S. Kim, and T. H. Kwom, "Replication of microlens arrays by injection molding," Microsyst.Technol. 10, 531-535 (2004). [CrossRef]
  17. P. Huang, T. Huang, Y. Sun, and S. Yang, "Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing," Opt. Express 16, 3041-3048 (2008). [CrossRef] [PubMed]
  18. R. K. Dutta, J. A. van Kan, A. A. Bettiol, and F. Watt, "Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp," Nucl. Instrum. Methods Phys. Res. B 260, 464-467 (2007). [CrossRef]
  19. J. Dziuban, A. Gorecka-Drzazga, L. Nieradko, and K. Malecki, "Silicon-glass micromachined chromatographic microcolumn," J. Capillary Electrophor. 6, 37-41 (1999).
  20. J. P. John and J. McDonald, "Spray etching of silicon in the HNO3/HF/H2O system," J. Electrochem. Soc. 140, 2622-2625 (1993). [CrossRef]
  21. D. L. Klein and D. J. D'Stefan, "Controlled etching of silicon in the HF-HNO3 system," J. Electrochem. Soc. 109, 37-42 (2000). [CrossRef]
  22. H. K. Kuiken, J. J. Kelly, and P. H. L. Notten, "Etching profiles at resist edges I. Mathematical models for Diffusion-Controlled cases," J. Electrochem. Soc. 133, 1217-1226 (1986). [CrossRef]
  23. P. H. L. Notten, J. J. Kelly, and H. K. Kuiken, "Etching profiles at resist edges II. Experimental confirmation of models using GaAs," J. Electrochem. Soc. 133, 1226-1232 (1986). [CrossRef]
  24. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Precise test of the diffusion-controlled wet isotropic etching of silicon via circular mask openings," J. Electrochem. Soc. 153, C641-C647 (2006). [CrossRef]
  25. V. B. Svetovoy, J. W. Berenschot, and M. C. Elwenspoek, "Experimental investigation of anisotropy in isotropic silicon etching," J. Micromech. Microeng. 17, 2344-2351 (2007). [CrossRef]
  26. H. K. Kuiken, "A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole," J. Eng. Math. 45, 75-90 (2003). [CrossRef]
  27. C. B. Shin and D. J. Economou, "Forced and natural convection effects on the shape evolution of cavities during wet chemical etching," J. Electrochem. Soc. 138, 527-538 (1991). [CrossRef]
  28. M. S. Kulkarni and H. F. Erk, "Acid based etching of silicon wafers: mass-transfer and kinetic effects," J. Electrochem. Soc. 147, 176-188 (2000). [CrossRef]
  29. X. J. Shen, L. Pan, and L. Lin, "Microplastic embossing process: experimental and theoretical characterizations," Sens. Actuators, A: Physical 97-98, 428-433 (2002). [CrossRef]
  30. J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, "Improvement of UV-moulding accuracy by heat and solvent assisted process," Microelectron. Eng. 85, 263-270 (2008). [CrossRef]
  31. J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, "Fabrication of Ni-shims using UV-moulding as an intermediate step," Microelectron. Eng.  83, 492-498 (2006). [CrossRef]
  32. J. Schwider, N. Lindlein, R. Schreiner, J. Lamprecht, G. Leuchs, J. Pfund, and M. Beyerlein, "Optikprüfung von refraktiven Mikrolinsen," Tech. Mess. 69, 467-482 (2002). [CrossRef]
  33. H. Ottevaere and H. Thienpont, "Refractive Optical Microlenses: an Introduction to Nomenclature and Characterization Techniques," in Encyclopedia of Modern Optics 4, 21-43 (Elsevier, Oxford, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited