OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6600–6612

Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment

A. Y. Elezzabi and S. Sederberg  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6600-6612 (2009)
http://dx.doi.org/10.1364/OE.17.006600


View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chiral media interact preferentially with either left- or right-circularly polarized electromagnetic waves, leading to effects including circular dichroism, optical rotation and circular preferential scattering. In this experiment, we revisit Lindman’s famous 1920 experiment linking artificial chiral materials to optical activity and we record the first time-domain measurements of a single-cycle THz pulse transmitted through randomly oriented metallic helices. Time-resolved measurements of co-and cross-polarized components of the transmitted electric field allow the electric field trajectory to be reconstructed and time dynamics of the two circular components to be investigated. For the first time, we show that time dynamics reveal two distinct effects that are separated in time: local preferential circular scattering and collective coupling. These findings are important on furthering our understanding on the analogy between optical activity arising from light interaction with large chiral molecules and that from macroscopic artificial chiral media.

© 2009 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7100) Ultrafast optics : Ultrafast measurements
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: February 26, 2009
Revised Manuscript: March 31, 2009
Manuscript Accepted: March 31, 2009
Published: April 6, 2009

Citation
A. Y. Elezzabi and S. Sederberg, "Optical activity in an artificial chiral media: a terahertz time-domain investigation of Karl F. Lindman’s 1920 pioneering experiment," Opt. Express 17, 6600-6612 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6600


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. F. Arago, "Mémoire sur une modification remarquable qu`éprouvent les rayons lumineux dans leur passage a` travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d`optique," Mém. Sci. Math. Phys. Inst. 1, 93-134 (1811).
  2. J. B. Biot, "Mémoire sur un nouveau genre d`oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux" Mém. Sci. Math. Phys. Inst. 1, 1-372 (1812).
  3. L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chimie et Physique. 24, 442-459 (1848).
  4. J. C. Bose, "On the rotation of plane of polarisation of electric waves by a twisted structure," Proc. R Soc. Lond. A 63, 146-152, (1898). [CrossRef]
  5. K. F. Lindman, "Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen," Annalen der Physik 63, 621-644 (1920). [CrossRef]
  6. M. H. Winkler, "An experimental investigation of some models for optical activity," J. Phys. Chem. 60, 1656-1659 (1956). [CrossRef]
  7. I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957). [CrossRef]
  8. S. F. Mason, "Optical Activity and Molecular Dissymmetry" Contemp. Phys. 9, 239-256, (1968). [CrossRef]
  9. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge 1982).
  10. J. H. Brewster, "Helix models for optical activity" in Topics in Stereochemistry, vol. 2, 1-72, N. L. Allinger and E. L. Eliel, ed. (John Wiley & Sons, Inc., 1967).
  11. F. Dufey, "Optical activity in the Drude helix" Chem. Phys. 330, 326-332 (2006). [CrossRef]
  12. S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).
  13. I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984). [CrossRef]
  14. I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980). [CrossRef] [PubMed]
  15. G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Oxford University Press, Oxford, 1997).
  16. I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984). [CrossRef]
  17. K. J. Chau, M. C. Quong, and A. Y. Elezzbi, "Terahertz time-domain investigation of axial optical activity from a sub-wavelength helix," Opt. Express 15, 3557-3567 (2007). [CrossRef] [PubMed]
  18. M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991). [CrossRef]
  19. R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).
  20. V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994). [CrossRef]
  21. J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001). [CrossRef]
  22. S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003). [CrossRef]
  23. F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995). [CrossRef]
  24. F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995). [CrossRef]
  25. F. C. F. Bohren, R. Luebbers, H. S. Langdon, and F. Hunsberger, "Microwave-absorbing chiral composites: is chirality essential or accidental," Appl. Opt. 31, 6403-6407 (1992). [CrossRef] [PubMed]
  26. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston 1994).
  27. J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).
  28. M. Johansson, "The Hilbert transform" Master Thesis, Mathematics, Växjö University (1999).
  29. E. U. Condon, "Theories of optical rotary power" Rev. Mod. Phys. 9, 432-457 (1937) [CrossRef]
  30. D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980). [CrossRef]
  31. I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964). [CrossRef]
  32. K. M. Flood and D. L. Jaggard, "Effective charge densities and current densities in isotropic chiral media," J. Opt. Soc. Am. A 12, 177-183 (1995). [CrossRef]
  33. C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980). [CrossRef]
  34. C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980). [CrossRef]
  35. C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981). [CrossRef]
  36. C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982). [CrossRef]
  37. C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983). [CrossRef] [PubMed]
  38. M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited