OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6655–6664

Interferometric sensing platform with dielectric nanostructured thin films

D. Celo, E. Post, M. Summers, T. Smy, M.J. Brett, and J. Albert  »View Author Affiliations


Optics Express, Vol. 17, Issue 8, pp. 6655-6664 (2009)
http://dx.doi.org/10.1364/OE.17.006655


View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new interferometer-based optical sensing platform with nanostructured thin films of ZrO2 or TiO2 as sensing environment has been developed. With the application of an IC compatible Si3N4 waveguide technology, Mach-Zehnder interferometer devices have been fabricated. The application of the glancing angle deposition technique allowed fabrication of nanostructured thin films as the optical sensing environment. Sensing ability of fabricated devices has been demonstrated through the refractive index measurement of a known gas. The transmission spectra and time response measurements have demonstrated a maximum phase shift of Δφ=π/10 and a ∣ΔP out ∣=0.65 dBm. Devices with TiO2 film on the sensing region performed much better than devices with ZrO2, with sensitivity twice as high.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: March 5, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 3, 2009
Published: April 7, 2009

Citation
D. Celo, E. Post, M. Summers, T. Smy, M. J. Brett, and J. Albert, "Interferometric sensing platform with dielectric nanostructured thin films," Opt. Express 17, 6655-6664 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6655


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006). [CrossRef]
  2. L. M. Lechuga, F. Prieto, and B. Sepulveda, in Optical Sensors for Industrial and Environmental Applications, (Springer, 2003).
  3. J. van Lith, P. V. Lambeck, J. W. Hoekstra, R. G. Heideman, and R. R. Wijn, "The segmented waveguide sensor: principle and experiments," J. Lightwave Technol. 23, 355-363 (2005). [CrossRef]
  4. S. Létant and M. J. Sailor, "Detection of HF gas with a porous Si interferometer," Adv. Mater. 12, 355-359 (2000). [CrossRef]
  5. K. Robbie, L. J. Friedrich, and S. K. Dew, "Fabrication of thin films with high porous nanostructure," J. Vac. Sci. Technol. A 13, 1032-1035 (1995). [CrossRef]
  6. J. Steele, A. van Popta, M. Hawkeyea, J. Sit, and M. Brett, "Nanostructured gradient index optical filter for high-speed humidity sensing," Sens. Actuators B 120, 213-219 (2006). [CrossRef]
  7. K. Harris, A. Huzinga, and M. Brett, "High-speed porous thin film humidity sensors," Electrochem. Solid-State Lett. 5, H27- H29 (2002). [CrossRef]
  8. S. Hsu and Y. Huang, "A novel Mach-Zehnder interferometer based on dual arrow structures for sensing applications," J. Lightwave Technol. 23, 4200-4206 (2005). [CrossRef]
  9. R. N. Fabricius, G. Gauglitz, and J. Ingenhoff, "A gas sensor based on an integrated optical Mach-Zehnder interferometer," Sens. Actuators B  7, 672-676 (1992). [CrossRef]
  10. R. Ramaswami and K. N. Sivarajan, in Optical Networks: A Practical Perspective, Second ed., (Morgan Kaufmann, 2002).
  11. G. J. Valdhuis, O. Parriaux, H. J. Hoekstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors," J. Lightwave Technol. 18, 677-682 (2000). [CrossRef]
  12. Optiwave, "Waveguide Optics Modeling Software Systems," in OptiBPM Technical Background, Ottawa, ON, Canada, (2005).
  13. A. Dakka, J. Lafait, C. Sella, S. Berthier, J. C. Martin, and M. Maaza, "Optical properties of Ag-TiO2 nanocermet films prepared by cosputtering and multilayer deposition techniques," Appl. Opt. 39, 2745-2753 (2000). [CrossRef]
  14. M. W. McCall and A. Lakhatakia, "Integrated optical polarization filtration via sculptured-thin-film technology," J. Mod. Opt. 48, 2179-2184 (2001).
  15. B. Dick and M. J. Brett, "Nanofabrication by glancing angle deposition," Encyclopedia of Nanoscience and Nanotechnology, 6, 703-725 (2004).
  16. D. Celo, R. Vandusen, T. Smy, J. Albert, N. G. Tarr, and P. D. Waldron, "Low temperature plasma etching for Si3N4 waveguide applications," J. Vac. Sci. Technol. A 26, 253-258 (2008). [CrossRef]
  17. A. C. van Popta, J. Cheng, J. C. Sit, and M. J. Brett, "Birefringence enhancement in annealed TiO2 thin films," J. Appl. Phys. 102, 013517 (2007). [CrossRef]
  18. G. Gulen and M. N. Inci, "Thermal optical properties of TiO2 films," Opt. Mater. 18, 373-381 (2002). [CrossRef]
  19. E. Drouard, P. Huguet-Chantome, L. Escoubas, and F. Flory, "?n/?T measurements performed with guided waves and their application to the temperature sensitivity of wavelength-division multiplexing filters," Appl. Opt. 41, 3132-3136 (2002). [CrossRef] [PubMed]
  20. E. Hecht, Optics, (Addison Wesley Longman, Inc., Third ed., 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited