OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 8 — Apr. 13, 2009
  • pp: 6799–6812

Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution

Francisco Robles, Robert N. Graf, and Adam Wax  »View Author Affiliations

Optics Express, Vol. 17, Issue 8, pp. 6799-6812 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current methods for analysis of spectroscopic optical coherence tomography (SOCT) signals suffer from an inherent tradeoff between time (depth) and frequency (wavelength) resolution. Here, we present a dual window (DW) method for reconstructing time frequency distributions (TFDs) that applies two orthogonal Gaussian windows that independently determine the spectral and temporal resolution. The effectiveness of the method is demonstrated in simulations and in processing of measured OCT signals that contain fields which vary in time and frequency. The DW method yields TFDs that maintain high spectral and temporal resolution and are free from the artifacts and limitations commonly observed with other processing methods.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(290.1350) Scattering : Backscattering

ToC Category:
Imaging Systems

Original Manuscript: February 6, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: April 6, 2009
Published: April 9, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Francisco Robles, Robert N. Graf, and Adam Wax, "Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution," Opt. Express 17, 6799-6812 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  3. J. F. deBoer, T. E. Milner, M. J. C. vanGemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef]
  4. J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22, 1439-1441 (1997). [CrossRef]
  5. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000). [CrossRef]
  6. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006). [CrossRef] [PubMed]
  7. A. Wax, C. H. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003). [CrossRef] [PubMed]
  8. R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005). [CrossRef]
  9. M. Bayram and R. G. Baraniuk, "Multiple window time-frequency analysis," Proceedings of the IEEE-Sp International Symposium on Time-Frequency and Time-Scale Analysis  535, 173-176 (1996). [CrossRef]
  10. D. J. Thomson, "Spectrum Estimation and Harmonic-Analysis," Proceedings of the IEEE 70, 1055-1096 (1982). [CrossRef]
  11. C. Y. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005). [CrossRef] [PubMed]
  12. R. N. Graf and A. Wax, "Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography," J. Opt. Soc. Am. A 24, 2186-2195 (2007). [CrossRef]
  13. L. Cohen, "Time Frequency-Distributions - a Review," Proc. IEEE 77, 941-981 (1989). [CrossRef]
  14. K. F. Lee, F. Reil, S. Bali, A. Wax, and J. E. Thomas, "Heterodyne measurement of Wigner distributions for classical optical fields," Opt. Lett. 24, 1370-1372 (1999) [CrossRef]
  15. R. N. Graf, W. J. Brown, and A. Wax, "Parallel frequency domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Opt. Lett. 33, 1285-1287 (2008). [CrossRef] [PubMed]
  16. F. H. White and K. Gohari, "Cellular and Nuclear Volumetric Alterations during Differentiation of Normal Hamster-Cheek Pouch Epithelium," Arch. Dermatol. Res. 273, 307-318 (1982). [CrossRef] [PubMed]
  17. A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83- 92 (2000). [CrossRef] [PubMed]
  18. H. Ding, J. Lu, K. Jacobs, and X. Hu, "Determination of refractive indices of porcine skin tissues and Intralipid at eight wavelengths between 325 and 1557 nm," J. Opt. Soc. Am. A. 22, 1151-1157 (2005). [CrossRef]
  19. V. Tuchin, "Tissue optics: light scattering methods and instruments for medical diagnosis," SPIE (2000).
  20. T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited