OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 6952–6961

Comparing photonic band structure calculation methods for diamond and pyrochlore crystals

E. C. M. Vermolen, J. H. J. Thijssen, A. Moroz, M. Megens, and A. van Blaaderen  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 6952-6961 (2009)
http://dx.doi.org/10.1364/OE.17.006952


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.

© 2009 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 23, 2009
Revised Manuscript: March 4, 2009
Manuscript Accepted: March 5, 2009
Published: April 13, 2009

Citation
E. C. Vermolen, J. H. Thijssen, A. Moroz, M. Megens, and A. van Blaaderen, "Comparing photonic band structure calculation methods for diamond and pyrochlore crystals," Opt. Express 17, 6952-6961 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-6952


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004). [CrossRef] [PubMed]
  2. V. P. Bykov, "Spontaneous emission in a periodic structure," Soviet Physics - JETP 35, 269-273 (1972).
  3. V. P. Bykov, "Spontaneous emission from a medium with a band spectrum," Sov. J. Quantum Electron. 4, 861-871 (1975). [CrossRef]
  4. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  6. Photonic Crystals and Light Localization in the 21st Century, NATO Science Series (C): Mathematical and Physical Sciences (Kluwer Academic, Dordrecht, 2001).
  7. K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll (ed.), Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, Berlin, 2004). [CrossRef]
  8. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444, 101-202 (2007). [CrossRef]
  9. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  10. M. Maldovan, C. K. Ullal,W. C. Carter, and E. L. Thomas, "Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups," Nat. Mater. 2, 664-667 (2003). [CrossRef] [PubMed]
  11. A. Moroz, "Metallo-dielectric diamond and zinc-blende photonic crystals," Phys. Rev. B 66, 115109 (2002). [CrossRef]
  12. A. J. Garcia-Adeva, "Band gap atlas for photonic crystals having the symmetry of the kagome and pyrochlore lattices," New J. Phys. 8, 86 (2006). [CrossRef]
  13. T. T. Ngo, C. M. Liddell, M. Ghebrebrhan, and J. D. Joannopoulos, "Tetrastack: Colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast," Appl. Phys. Lett. 88, 241920 (2006). [CrossRef]
  14. A. V. Tkachenko, "Morphological diversity of DNA-colloidal self-assembly," Phys. Rev. Lett. 89, 148303 (2002). [CrossRef] [PubMed]
  15. F. García-Santamaría, H. T. Miyazaki, A. Urqu’?a, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. López, "Nanorobotic Manipulation of Microspheres for On-Chip Diamond Architectures," Adv. Mater. 14, 1144-1147 (2002). [CrossRef]
  16. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  17. Z. L. Zhang, A. S. Keys, T. Chen, and S. C. Glotzer, "Self-assembly of patchy particles into diamond structures through molecular mimicry," Langmuir 21, 11547-11551 (2005). [CrossRef] [PubMed]
  18. V. N. Manoharan and D. J. Pine, "Building materials by packing spheres," MRS Bull. 29, 91-95 (2004). [CrossRef]
  19. A. P. Hynninen, J. H. J. Thijssen, E. C. M. Vermolen, M. Dijkstra, and A. van Blaaderen, "Self-assembly route for photonic crystals with a bandgap in the visible region," Nat. Mater. 6, 202-205 (2007). [CrossRef] [PubMed]
  20. S. Simeonov, U. Bass, and A. R. McGurn, "Photonic band structure of zinc blende type periodic dielectric media," Physica B 228, 245-250 (1996). [CrossRef]
  21. H. S. Sozuer, J. W. Haus, and R. Inguva, "Photonic Bands - Convergence Problems with the Plane-Wave Method," Phys. Rev. B 45, 13962-13972 (1992). [CrossRef]
  22. A. Moroz and C. Sommers, "Photonic band gaps of three-dimensional face-centred cubic lattices," J. Phys.: Condens. Matter 11, 997-1008 (1999). [CrossRef]
  23. K. Edagawa, S. Kanoko, and M. Notomi, "Photonic amorphous diamond structure with a 3D photonic band gap," Phys. Rev. Lett. 100, 013901 (2008). [CrossRef] [PubMed]
  24. R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B 57, 3701-3705 (1998). [CrossRef]
  25. X. D. Wang, T. C. Leung, B. N. Harmon, and P. Carra, "Circular Magnetic-X-Ray Dichroism in the Heavy Rare-Earth-Metals," Phys. Rev. B 47, 9087-9090 (1993). [CrossRef]
  26. A. Moroz, "Density-of-States Calculations and Multiple-Scattering Theory for Photons," Phys. Rev. B 51, 2068-2081 (1995). [CrossRef]
  27. A. R. Williams and J. v.-W. Morgan, "Multiple scattering by non-muffin-tin potentials: general formulation," J. Phys. C 7, 37-60 (1974). [CrossRef]
  28. W. H. Butler, A. Gonis, and X. G. Zhang, "Multiple-Scattering Theory for Space-Filling Cell Potentials," Phys. Rev. B 45, 11527-11541 (1992). [CrossRef]
  29. W. H. Butler, A. Gonis, and X. G. Zhang, "Basis Functions for Arbitrary Cells in Multiple-Scattering Theory," Phys. Rev. B 48, 2118-2130 (1993). [CrossRef]
  30. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  31. "http://ab-initio.mit.edu/wiki/index.php/Main Page,".
  32. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  33. H. Míguez, F. Meseguer, C. López, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornés, "Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering," Adv. Mater. 10, 480-483 (1998). [CrossRef] [PubMed]
  34. Z. Y. Li and Z. Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited