OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7074–7087

Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter

David Krčmařík, Radan Slavík, Yongwoo Park, and José Azaña  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7074-7087 (2009)
http://dx.doi.org/10.1364/OE.17.007074


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high quality pulse compression at high repetition rates by use of spectral broadening of short parabolic-like pulses in a normally-dispersive highly nonlinear fiber (HNLF) followed by linear dispersion compensation with a conventional SMF-28 fiber. The key contribution of this work is on the use of a simple and efficient long-period fiber grating (LPFG) filter for synthesizing the desired parabolic-like pulses from sech2-like input optical pulses; this all-fiber low-loss filter enables reducing significantly the required input pulse power as compared with the use of previous all-fiber pulse re-shaping solutions (e.g. fiber Bragg gratings). A detailed numerical analysis has been performed in order to optimize the system’s performance, including investigation of the optimal initial pulse shape to be launched into the HNLF fiber. We found that the pulse shape launched into the HNLF is critically important for suppressing the undesired wave breaking in the nonlinear spectral broadening process. The optimal shape is found to be independent on the parameters of normally dispersive HNLFs. In our experiments, 1.5-ps pulses emitted by a 10-GHz mode-locked laser are first reshaped into 3.2-ps parabolic-like pulses using our LPFG-based pulse reshaper. Flat spectrum broadening of the amplified initial parabolic-like pulses has been generated using propagation through a commercially-available HNLF. Pulses of 260 fs duration with satellite peak and pedestal suppression greater than 17 dB have been obtained after the linear dispersion compensation fiber. The generated pulses exhibit a 20-nm wide supercontinuum energy spectrum that has almost a square-like spectral profile with >85% of the pulse energy contained in its FWHM spectral bandwidth.

© 2009 Optical Society of America

OCIS Codes
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(350.2770) Other areas of optics : Gratings
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Fiber Lasers

History
Original Manuscript: February 19, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 4, 2009
Published: April 14, 2009

Citation
David Krcmarík, Radan Slavík, Yongwoo Park, and José Azaña, "Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter," Opt. Express 17, 7074-7087 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).
  2. F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).
  3. R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).
  4. A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of amultielement liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990).
  5. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
  6. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006). [PubMed]
  7. F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, "Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper," presented at ECOC, Brussels, Belgium, 2008.
  8. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, "Optical frequency conversion, pulse compression and signal copying using triangular pulses," presented at ECOC, Brussels, Belgium, 2008, Paper Mo.3.F.4.
  9. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185-1190 (1993).
  10. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).
  11. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).
  12. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983). [PubMed]
  13. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).
  14. Y. Park, M. H. Asghari, T. -J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on coherence synthesization," Opt. Express 15, 9584-9599 (2007). [PubMed]
  15. R. Slavík, Y. Park, T. -J. Ahn, and J. Azaña, "Synthesis of picosecond parabolic pulses formed by a long period fiber grating structure and its application for flat-top supercontinuum generation," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB4.
  16. A. I. Latkin, S. Boscolo, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB7.
  17. Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).
  18. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
  19. D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).
  20. C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003). [PubMed]
  21. K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).
  22. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (440 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited