OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7206–7216

Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of linedefect

Kuon Inoue, Hisaya Oda, Naoki Ikeda, and Kiyoshi Asakawa  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7206-7216 (2009)
http://dx.doi.org/10.1364/OE.17.007206


View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally studied enhancement of the third-order nonlinear optical phenomena, i.e., self-phase modulation due to optical Kerr effect and two-photon absorption (TPA) in a small group-velocity (Vg ) linedefect guided-mode of AlGaAs-based photonic-crystal slab waveguide. We found that the phase shift ∆φ or nominal Kerr constant n2 and TPA coefficient β were strikingly enhanced due to small Vg as the band edge was approached, such that they were proportional to (Vg )-2; the nonlinear refractive index n2 is enhanced proportional to Vg -1. We also observed that owing to this enhancement as well as an extremely small cross-section area, the energy required for inducing π-phase shift was very small, being of an order of a few pJ for 5 ps optical pulse and for a 0.5-mm long sample. Based on those results, we discuss the possibility of developing ultra-fast and ultrasmall all-optical switches that operate due to cross-phase modulation.

© 2009 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7400) Optical devices : Waveguides, slab
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 6, 2009
Revised Manuscript: March 24, 2009
Manuscript Accepted: March 24, 2009
Published: April 16, 2009

Citation
Kuon Inoue, Hisaya Oda, Naoki Ikeda, and Kiyoshi Asakawa, "Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect," Opt. Express 17, 7206-7216 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Asakawa and K. Inoue, Photonic Crystals; Physics, Fabrication and Applications, K. Inoue and K. Ohtaka, eds., (Springer, Heidelberg, 2004), Chap. 12. [PubMed]
  2. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baetys, "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208-244 (2006). [CrossRef]
  3. R. W. Boyd, Nonlinear Optics, 2nded. (Academic Press, New York, 2003), Chap. 3.
  4. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  5. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004). [CrossRef] [PubMed]
  6. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, Hiroshi Ishikawa, and Kiyoshi Asakawa; "Ultra-fast photonic crystal/ quantum dot all-optical switch for future photonic networks," Opt. Express 12, 6606-6614 (2004). [CrossRef] [PubMed]
  7. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear wave guiding in photonic crystal slabs," Phys. Rev. B 62, 8212-8221 (2000). [CrossRef]
  8. Y. Sugimoto, T. Tanaka, N. Ikeda, Y. Nakamura, K. Inoue, and K. Asakawa, "Low propagation loss of 0.76 dB / mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1097 (2004). [CrossRef] [PubMed]
  9. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341-348 (1997). [CrossRef]
  10. S. T. Ho, C. E. Soccolish, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, "Large nonlinear phase shifts in low-loss AlxGa1-xAs waveguides near half-gap," Appl. Phys. Lett. 59, 2558-2560 (1991). [CrossRef]
  11. V. Mizrahi, K. W. Delong, G. C. Stegeman, M. A. Saifi, and M. J. Andrejico, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989). [CrossRef] [PubMed]
  12. K. W. Delong, K. B. Rochford, and G. I. Stegeman, "Effect of two-photon absorption on all-optical guided-wave devices," Appl. Phys. Lett. 55, 1823-1825 (1989). [CrossRef]
  13. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984), Chap. 26.
  14. Y. Sugimoto, Y. Tanaka, N. Ikeda, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Nakamura, K. Inoue, H. Sasaki, Y. Watanabe, K. Ishida, H. Ishikawa, and K. Asakawa, "Two-Dimensional Semiconductor-Based Photonic Crystal Slab Waveguides for Ultra-Fast Optical Signal Processing Devices," IEICE Trans. Electron.  87-C, 316-326 (2004).
  15. N. Ikeda, H. Kawashima, Y Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, "Coupling characteristic of micro planar lens for 2 photonic crystal waveguides," Proc. 19th Int’l Conf. Indium Phosphide and Related Materials (IEEE, Matsue, Japan, 2007), p. 484-486 [PubMed]
  16. K. Inoue, N. Kawai, Y. Sugimoto, N. Ikeda, N. Carlsson, and K. Asakawa, "Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs," Phys. Rev. B 65, 121308 (R) (2002).
  17. H. Oda, K. Inoue Y. Tanaka, Y. Sugimoto, H. Ishikawa, and K. Asakawa, "Self-phase modulation in photonic-crystal-slab line-defect waveguides," Appl. Phys. Lett. 90, 231102:1-3 (2007) [CrossRef]
  18. A. Villeneuve, C. C. Yang, G. I. Stegeman, C-H. Lin, and H-H. Lin, "Nonlinear refractive index and two photon-absorption near half the band gap in AlGaAs," Appl. Phys. Lett. 62, 2465-2467 (1993). [CrossRef]
  19. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, "Nonlinear Absorption in a GaAs Waveguide Just Above Half the Band Gap," IEEE J. Quantum Electron. 30, 1172-1174 (1994). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 7
  21. T. G. Ulmer, R. K. Tan, Z. Zhou, S. E. Ralph, R. P. Kenan, and C. M. Verber, "Two-photon absorption-?induced self-phase modulation in GaAs-AlGaAs waveguides for surface-emitted second-harmonic generation," Opt. Lett. 24, 756-758 (1999). [CrossRef]
  22. G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 ?m pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004) [CrossRef]
  23. G. A. Sivilogon, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Marandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9377-9384 (2006). [CrossRef]
  24. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006). [CrossRef] [PubMed]
  25. H. Oda, K. Inoue, A. Yamanaka, N , Ikeda, Y . Sugimoto, and K . Asakawa, "Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides," Appl. Phys. Lett.  93, 051114 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited