OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7275–7284

Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions

Mang Hin Kok, Weixin Lu, Wing Yim Tam, and George K. L. Wong  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7275-7284 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lasing requires an active gain medium and a feedback mechanism. In conventional lasers the feedback is provided externally, e.g. by mirrors. An alternate approach is through Bloch waves in photonic crystals composed of periodic dielectric materials in which propagation of light in certain frequency ranges, known as photonic bandgaps, is forbidden. Compared to periodic crystals, quasicrystals have higher symmetry and are more favorable for the formation of photonic bandgaps. Hence quasicrystals are more efficient in providing the feedback mechanism for lasing. Here we report observation of lasing at visible wavelengths from dye-doped three-dimensional icosahedral quasicrystals fabricated in dichromate gelatin emulsions using a novel seven-beam optical interference holographic method. Multi-directional lasing exhibiting the icosahedral symmetry was observed. The lasing modes and pattern were explained by using the lasing condition expressed in the reciprocal lattice space of the icosahedral quasicrystal.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 2, 2009
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 15, 2009
Published: April 17, 2009

Mang Hin Kok, Weixin Lu, Wing Yim Tam, and George K. L. Wong, "Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions," Opt. Express 17, 7275-7284 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997). [CrossRef]
  2. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997). [CrossRef]
  3. C. M. Soukoulis, Photonic Bandgap Materials (Kluwer, Dordrecht, 1996).
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  6. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  7. M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996). [CrossRef] [PubMed]
  8. T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006). [CrossRef]
  9. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006). [CrossRef]
  10. M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008). [CrossRef]
  11. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  12. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999). [CrossRef]
  13. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001). [CrossRef]
  14. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994). [CrossRef]
  15. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999). [CrossRef]
  16. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).
  17. Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, 1999). [CrossRef]
  18. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  19. X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001). [CrossRef]
  20. L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef]
  21. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  22. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001). [CrossRef]
  23. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000). [CrossRef]
  24. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006). [CrossRef] [PubMed]
  25. J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, "Excitonic polaritons in Fibonacci quasicrystals," Opt. Express 16, 15382-15387 (2008). [CrossRef] [PubMed]
  26. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004). [CrossRef] [PubMed]
  27. K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004). [CrossRef]
  28. S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005). [CrossRef]
  29. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005). [CrossRef] [PubMed]
  30. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006). [CrossRef]
  31. W. Y. Tam, "Icosahedral quasicrystals by optical interference holography," Appl. Phys. Lett. 89, 0251111 (2006). [CrossRef]
  32. J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelength by optical interference holography," Opt. Express 15, 4287-4295 (2007). [CrossRef] [PubMed]
  33. D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988). [CrossRef]
  34. R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006). [CrossRef]
  35. B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited