OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7368–7376

Nonlinear optical properties of Phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films

Kenji Imakita, Masahiko Ito, Minoru Fujii, and Shinji Hayashi  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7368-7376 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear optical properties of phosphorus (P) -doped silicon (Si) nanocrystals are studied by z-scan technique in femtosecond regime at around 1.6 eV. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) of Si-ncs are significantly enhanced by P-doping. The enhancement of n2 is accompanied by the increase of the linear absorption in the same energy region, suggesting that impurity-related energy states are responsible for the enhancement of the nonlinear optical response.

© 2009 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

ToC Category:
Nonlinear Optics

Original Manuscript: March 9, 2009
Revised Manuscript: April 10, 2009
Manuscript Accepted: April 13, 2009
Published: April 20, 2009

Kenji Imakita, Masahiko Ito, Minoru Fujii, and Shinji Hayashi, "Nonlinear optical properties of Phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films," Opt. Express 17, 7368-7376 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  2. S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000). [CrossRef]
  3. C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995). [CrossRef]
  4. P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002). [CrossRef]
  5. L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003). [CrossRef]
  6. S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008). [CrossRef]
  7. S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002). [CrossRef]
  8. Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995). [CrossRef]
  9. S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008). [CrossRef]
  10. G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002). [CrossRef]
  11. K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).
  12. S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002). [CrossRef]
  13. S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997). [CrossRef]
  14. M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000). [CrossRef]
  15. M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004). [CrossRef]
  16. M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005). [CrossRef]
  17. A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000). [CrossRef]
  18. B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001). [CrossRef]
  19. M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002). [CrossRef] [PubMed]
  20. G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005). [CrossRef]
  21. G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995). [CrossRef]
  22. D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004). [CrossRef] [PubMed]
  23. S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006). [CrossRef]
  24. M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998). [CrossRef]
  25. D. A. G. Bruggeman,"Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935). [CrossRef]
  26. G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981). [CrossRef]
  27. M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000). [CrossRef]
  28. M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000). [CrossRef]
  29. P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981). [CrossRef]
  30. V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980). [CrossRef]
  31. E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009). [CrossRef]
  32. V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998). [CrossRef]
  33. S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000). [CrossRef]
  34. S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998). [CrossRef]
  35. R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Appl. Phys. Lett. 5, 17 (1964). [CrossRef]
  36. C. C. Wang, "Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities," Phys. Rev. B 2, 2045-2048 (1970). [CrossRef]
  37. S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005). [CrossRef]
  38. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, "Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses," J. Opt. Soc. Am. B 16, 1904-1908 (1999). [CrossRef]
  39. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000). [CrossRef]
  40. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited