OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7479–7490

Broadband enhancement of light emission in silicon slot waveguides

Young Chul Jun, Ryan M. Briggs, Harry A. Atwater, and Mark L. Brongersma  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7479-7490 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the light emission properties of electrical dipole emitters inside 2-dimensional (2D) and 3-dimensional (3D) silicon slot waveguides and evaluate the spontaneous emission enhancement (Fp) and waveguide coupling ratio (β). Under realistic conditions, we find that greater than 10-fold enhancement in Fp can be achieved, together with a β as large as 0.95. In contrast to the case of high Q optical resonators, such performance enhancements are obtained over a broad wavelength region, which can cover the entire emission spectrum of popular optical dopants such as Er. The enhanced luminescence efficiency and the strong coupling into a limited set of well-defined waveguide modes enables a new class of power-efficient, CMOS-compatible, waveguide-based light sources.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.2790) Integrated optics : Guided waves
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(230.6080) Optical devices : Sources

ToC Category:
Integrated Optics

Original Manuscript: March 9, 2009
Revised Manuscript: April 20, 2009
Manuscript Accepted: April 20, 2009
Published: April 21, 2009

Young Chul Jun, Ryan M. Briggs, Harry A. Atwater, and Mark L. Brongersma, "Broadband enhancement of light emission in silicon slot waveguides," Opt. Express 17, 7479-7490 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, "Guiding, modulating, and emitting light on silicon - challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005).
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
  3. G. T. Reed, eds. Silicon Photonics: the State of the Art (J. Wiley & Sons, West Sussex, England, 2008).
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [PubMed]
  5. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, "Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators," Nat. Photonics 2, 433-437 (2008).
  6. P. M. Fauchet, Monolithic silicon light sources, in Silicon Photonics, L. Pavesi and D. J. Lockwood, eds., (Springer-Verlag, Berlin, 2004). p. 177.
  7. A. Polman, "Erbium implanted thin film photonic materials," J. Appl. Phys. 82, 1-39 (1997).
  8. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802(R) (2006).
  9. S. Coffa, G. Franzo, F. Priolo, A. Polman, and R. Serna, "Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si," Phys. Rev. B 49, 16313-16320 (1994).
  10. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, "Controlled Atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity," Phys. Rev. Lett. 71, 517-520 (1993). [PubMed]
  11. E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995). [PubMed]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructures," Opt. Lett. 29, 1209-1211 (2004). [PubMed]
  13. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [PubMed]
  14. J. T. Robinson, C. Manolatou, C. Long, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (1998).
  15. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, "Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides," Appl. Phys. Lett 88, 251114 (2006).
  16. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, "Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides," Appl. Phys. Lett 89, 241114 (2006).
  17. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005). [PubMed]
  18. C. Creatore and L. C. Andreani, "Quantum theory of spontaneous emission in multilayer dielectric structures," Phys. Rev. A 78, 063825 (2008).
  19. Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
  20. R. Chance, A. Prock, and R. Silby, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1 (1978).
  21. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195 (1984).
  22. A. C. Hryciw, Y. C. Jun, and M. L. Brongersma, "Plasmon-enhanced emission from optically-doped MOS light sources," Opt. Express 17, 185-192 (2009). [PubMed]
  23. E. D. Palik, Handbook of Optical Constants and Solids (Academic, Orlando, Fla., 1985).
  24. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998).
  25. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
  26. J.-M. Gerard, Solid-state cavity-quanum electrodynamics with self-assembled quantum dots, in Single Quantum Dots, P. Michler, ed., (Springer-Verlag, Berlin, 2003). p. 269.
  27. E. Burstein and C. Weisbuch, eds., Confined electrons and photons (Plenum Press: New York, NY, 1995).
  28. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press: Cambridge, UK, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited