OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7670–7681

Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers

John R. Tumbleston, Doo-Hyun Ko, Edward T. Samulski, and Rene Lopez  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7670-7681 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by ~17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction ~0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer.

© 2009 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 3, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: April 21, 2009
Published: April 24, 2009

John R. Tumbleston, Doo-Hyun Ko, Edward T. Samulski, and Rene Lopez, "Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers," Opt. Express 17, 7670-7681 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986).
  2. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Mater. 4, 864-868 (2005).
  3. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols," Nature Mater. 6, 497-500 (2007).
  4. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Adv. Funct. Mater. 15, 1617-1622 (2005).
  5. V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, "Photocurrent generation in polymerfullerene bulk heterojunctions," Phys. Rev. Lett. 93, 216601-1-4 (2004).
  6. D.W. Sievers, V. Shrotriya, and Y. Yang, "Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells," J. Appl. Phys. 100, 114509-1-7 (2006).
  7. J. D. Kotlarski, P. W. M. Blom, L. A. J. Koster, M. Lenes, and L. H. Slooff, "Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells," J. Appl. Phys. 103, 804502-1-5 (2008).
  8. M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, "Functional microprism substrate for organic solar cells," Thin Solid Films 511-512, 628-633 (2006).
  9. S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-1-3 (2007).
  10. Y. Zhou, F. Zhang, K. Tvingstedt, W. Tian, and O. Inganas, "Multifolded polymer solar cells on flexible substrates," Appl. Phys. Lett. 93, 033302-1-3 (2007).
  11. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, "Diffraction gratings and buried nanoelectrodes- architectures for organic solar cells," Thin Solid Films 451-452, 619-623 (2004).
  12. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, "Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography," Adv. Funct. Mater. 18, 3956-3963 (2008).
  13. J. Y. Kim, S.H. Kim, H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, "New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer," Adv. Mater. 18, 572-576 (2006).
  14. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, "The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study," Appl. Phys. Lett. 91, 113520-1-3 (2007).
  15. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16986-17000 (2007). [PubMed]
  16. D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102-1-5 (2008).
  17. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111-1-3 (2006).
  18. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, "Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector," Appl. Phys. Lett. 93, 221105-1-3 (2008).
  19. D. Duche, L. Escoubas, J.-J. Simon, P. Torchio,W. Vervisch, and F. Flory, "Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells," Appl. Phys. Lett. 92, 193310-1-3 (2008).
  20. J. R. Tumbleston, D.-H. Ko, E.T. Samulski, and R. Lopez, "Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer," Appl. Phys. Lett. 94, 043305-1-3 (2009).
  21. J. R. Tumbleston, D.-H. Ko, R. Lopez, and E. T. Samulski, "Characterizing enhanced performance of nanopatterned bulk heterojunction organic photovoltaics," Proc. SPIE 7047, 70470S-1-9 (2008).
  22. D.-H. Ko, Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories CB 3290, Chapel Hill, N.C. 27599, and J.R. Tumbleston, L. Zhang, S.Williams, J. DeSimone, R. Lopez, and E.T. Samulski are preparing a manuscript to be called "Photonic crystal geometry for organic solar cells."
  23. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, "Tunable polariton absorption of distributed feedback microcavities at room temperature," Phys. Rev. B 57, 12428-12434 (1998).
  24. R. Shimada, A. L. Yablonskii, S. G. Tikhodeev, and T. Ishihara, "Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance," IEEE J. Quantum Electron. 38, 872-879 (2002).
  25. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102-1-17 (2002).
  26. V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, "Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells," Adv. Funct. Mater. 16, 699-708 (2006).
  27. G. Yu and A. J. Heeger, "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions," J. Appl. Phys. 78, 4510-4515 (1995).
  28. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, "Device physics of polymer:fullerene bulk heterojunction solar cells," Adv. Mater. 19, 1551-1566 (2007).
  29. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, "Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBMblend," Sol. Energy Mat. Sol. Cells 91405-410 (2007).
  30. H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulkheterojunction organic solar cells," Mol. Cryst. Liq. Cryst. 385, 113-119 (2002).
  31. E. D. Palik, Handbook of Optical Constants of Solids. (Academic, 1985), pp. 369.
  32. W. J. E. Beek,M.M. Wienk,M. Kemerink, X. Yang, and R. A. J. Janssen, "Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells," J. Phys. Chem. B 109, 9505-9516 (2005).
  33. D. M. Whittaker and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999).
  34. L. A. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," J. Appl. Phys. 86, 487-496 (1999).
  35. N.-K. Persson, H. Arwin, and O. Inganas, "Optical optimization of polyfluorene-fullerene blend photodiodes," J. Appl. Phys. 97, 034503-1-8 (2005).
  36. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of polymer/fullerene bulk heterojunction solar cells," Phys. Rev. B 72, 085205-1-9 (2005).
  37. G. A. Buxton and N. Clarke, "Computer simulation of polymer solar cells," Modeling Simul. Mater. Sci. Eng. 1513-26 (2007).
  38. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)," J. Appl. Phys. 98, 043704-1-5 (2005).
  39. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light. Princeton University Press, 1995.
  40. NREL, "Reference Solar Spectral Irradiance: Air Mass 1.5," http://rredc.nrel.gov/solar/spectra/am1.5/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited