OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10627–10641

Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments

Thorsten Wohland, Xianke Shi, Jagadish Sankaran, and Ernst H.K. Stelzer  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10627-10641 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The life sciences require new highly sensitive imaging tools, which allow the quantitative measurement of molecular parameters within a physiological three-dimensional (3D) environment. Therefore, we combined single plane illumination microscopy (SPIM) with camera based fluorescence correlation spectroscopy (FCS). SPIM-FCS provides contiguous particle number and diffusion coefficient images with a high spatial resolution in homo- and heterogeneous 3D specimens and live zebrafish embryos. Our SPIM-FCS recorded up to 4096 spectra within 56 seconds at a laser power of 60 μW without damaging the embryo. This new FCS modality provides more measurements per time and more, less photo-toxic measurements per sample than confocal based methods. In essence, SPIM-FCS offers new opportunities to observe biomolecular interactions quantitatively and functions in a highly multiplexed manner within a physiologically relevant 3D environment.

© 2010 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: March 17, 2010
Revised Manuscript: May 2, 2010
Manuscript Accepted: May 4, 2010
Published: May 6, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Thorsten Wohland, Xianke Shi, Jagadish Sankaran, and Ernst H.K. Stelzer, "Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments," Opt. Express 18, 10627-10641 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007). [CrossRef] [PubMed]
  2. P. J. Keller, F. Pampaloni, and E. H. Stelzer, “Three-dimensional preparation and imaging reveal intrinsic microtubule properties,” Nat. Methods 4(10), 843–846 (2007). [CrossRef] [PubMed]
  3. S. Chiantia, J. Ries, and P. Schwille, “Fluorescence correlation spectroscopy in membrane structure elucidation,” Biochim. Biophys. Acta 1788(1), 225–233 (2009). [CrossRef]
  4. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008). [CrossRef] [PubMed]
  5. J. Langowski, “Protein-protein interactions determined by fluorescence correlation spectroscopy,” Methods Cell Biol. 85, 471–484 (2008). [CrossRef]
  6. P. Liu, S. Ahmed, and T. Wohland, “The F-techniques: advances in receptor protein studies,” Trends Endocrinol. Metab. 19(5), 181–190 (2008). [CrossRef] [PubMed]
  7. A. V. Orden and J. Jung, “Review fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation,” Biopolymers 89(1), 1–16 (2008). [CrossRef]
  8. M. Weiss, “Probing the interior of living cells with fluorescence correlation spectroscopy,” Ann. N. Y. Acad. Sci. 1130(1), 21–27 (2008). [CrossRef]
  9. D. Magde, E. Elson, and W. Webb, “Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972). [CrossRef]
  10. M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14(12), 5013–5020 (2006). [CrossRef] [PubMed]
  11. G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38(6), 813–828 (2009). [CrossRef] [PubMed]
  12. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]
  13. D. R. Sisan, R. Arevalo, C. Graves, R. McAllister, and J. S. Urbach, “Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope,” Biophys. J. 91(11), 4241–4252 (2006). [CrossRef] [PubMed]
  14. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]
  15. M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array,” J. Biomed. Opt. 9(5), 913–921 (2004). [CrossRef] [PubMed]
  16. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006). [CrossRef] [PubMed]
  17. D. L. Kolin, D. Ronis, and P. W. Wiseman, “k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics,” Biophys. J. 91(8), 3061–3075 (2006). [CrossRef] [PubMed]
  18. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007). [CrossRef] [PubMed]
  19. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  20. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4(4), 311–313 (2007). [PubMed]
  21. J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16(10), 7142–7152 (2008). [CrossRef] [PubMed]
  22. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007). [CrossRef] [PubMed]
  23. J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008). [CrossRef] [PubMed]
  24. L. Guo, J. Y. Har, J. Sankaran, Y. M. Hong, B. Kannan, and T. Wohland, “Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study,” ChemPhysChem 9(5), 721–728 (2008). [CrossRef] [PubMed]
  25. J. Sankaran, M. Manna, L. Guo, R. Kraut, and T. Wohland, “Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy,” Biophys. J. 97(9), 2630–2639 (2009). [CrossRef] [PubMed]
  26. M. Westerfield, The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio) (Univ. of Oregon Press, Eugene, 2000).
  27. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008). [CrossRef] [PubMed]
  28. C. R. Daniels, C. Reznik, and C. F. Landes, “Dye Diffusion at Surfaces: Charge Matters,” Langmuir (2010).
  29. M. H. Malone, N. Sciaky, L. Stalheim, K. M. Hahn, E. Linney, and G. L. Johnson, “Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae,” BMC Biotechnol. 7(1), 40 (2007). [CrossRef] [PubMed]
  30. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999). [CrossRef] [PubMed]
  31. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007). [CrossRef] [PubMed]
  32. N. L. Thompson, “Topics in Fluorescence Spectroscopy Techniques,” J. R. Lakowicz, ed. (Plenum, New York, 1991), pp. 337–378.
  33. K. Starchev, J. Zhang, and J. Buffle, “Applications of Fluorescence Correlation Spectroscopy—Particle Size Effect,” J. Colloid Interface Sci. 203(1), 189–196 (1998). [CrossRef]
  34. P. J. Keller and E. H. Stelzer, “Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy,” Curr. Opin. Neurobiol. 18(6), 624–632 (2008). [CrossRef]
  35. G. Persson, P. Thyberg, and J. Widengren, “Modulated fluorescence correlation spectroscopy with complete time range information,” Biophys. J. 94(3), 977–985 (2008). [CrossRef]
  36. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited