OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10731–10741

Two-fold symmetric geometries for tailored phase-matching in birefringent solid-core air-silica microstructured fibers

Stéphane Virally, Nicolas Godbout, Suzanne Lacroix, and Laurent Labonté  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10731-10741 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of birefringence in 2-fold-symmetric microstructured optical fibers on the phase matching conditions for four-wave mixing is analyzed. The three general types of four-wave mixing are considered. General features are obtained through analytic expansions of phase-matching formulas. Three commonly used designs of fibers are analyzed numerically. Particular designs allow the generation of specified wavelengths, supercontinuum or entangled photons.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 11, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: May 3, 2010
Published: May 7, 2010

Stéphane Virally, Nicolas Godbout, Suzanne Lacroix, and Laurent Labonté, "Two-fold symmetric geometries for tailored phase-matching in birefringent solid-core air-silica microstructured fibers," Opt. Express 18, 10731-10741 (2010)

Sort:  Journal  |  Reset  


  1. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. Mangan, T. Birks, and P. S. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325 (2000), URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1325. [CrossRef]
  2. M. Steel, and R. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19(4), 495–503 (2001), URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=920847. [CrossRef]
  3. R. Stolen, M. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6(5), 213 (1981), URL http://ol.osa.org/abstract.cfm?URI=ol-6-5-213. [CrossRef] [PubMed]
  4. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2006).
  5. S. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20(8), 866 (1995), URL http://ol.osa.org/abstract.cfm?URI=ol-20-8-866. [CrossRef] [PubMed]
  6. R. Kruhlak, G. K. L. Wong, J. Chen, S. Murdoch, R. Leonhardt, J. D. Harvey, N. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31(10), 1379 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-10-1379. [CrossRef] [PubMed]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225 (2003), URL http://ol.osa.org/abstract.cfm?URI=ol-28-22-2225. [CrossRef] [PubMed]
  8. F. Biancalana, and D. Skryabin, “Vector modulational instabilities in ultra-small core optical fibres,” J. Opt. A: Pure Appl. Opt. 6(4), 301–306 (2004), URL http://stacks.iop.org/1464-4258/6/i=4/a=002?key=crossref.048f95044d026e6efb96f637f8ad2229. [CrossRef]
  9. G. K. L. Wong, A. Chen, S. Murdoch, R. Leonhardt, J. D. Harvey, N. Joly, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Continuous-wave tunable optical parametric generation in a photonic-crystal fiber,” J. Opt. Soc. Am. B 22(11), 2505 (2005), URL http://josab.osa.org/abstract.cfm?URI=josab-22-11-2505. [CrossRef]
  10. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17(6), 4670–4676 (2009), URL http://www.ncbi.nlm.nih.gov/pubmed/19293896. [CrossRef] [PubMed]
  11. J. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42(1), 682–685 (1990), URL http://pra.aps.org/abstract/PRA/v42/i1/p682_1. [CrossRef] [PubMed]
  12. P. Drummond, T. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78(2), 137–142 (1990), URL http://linkinghub.elsevier.com/retrieve/pii/003040189090110F. [CrossRef]
  13. J. Chen, G. K. L. Wong, S. Murdoch, R. Kruhlak, R. Leonhardt, J. D. Harvey, N. Joly, and J. C. Knight, “Crossphase modulation instability in photonic crystal fibers,” Opt. Lett. 31(7), 873 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-7-873. [CrossRef] [PubMed]
  14. A. Nguyen, K. Phan Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. Van Erps, H. Thienpont, and S. Massar, “Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime,” Opt. Express 14(18), 8290 (2006), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8290. [CrossRef] [PubMed]
  15. R. Stolen, and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982), URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1071660. [CrossRef]
  16. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173 (2007), URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-15-2173. [CrossRef] [PubMed]
  17. A. Tonello, S. Pitois, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, and C. De Angelis, “Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber,” Opt. Express 14(1), 397 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-1-397. [CrossRef] [PubMed]
  18. L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006), URL http://linkinghub.elsevier.com/retrieve/pii/S0030401805014008. [CrossRef]
  19. L. Labonté, E. Pone, M. Skorobogatiy, N. Godbout, S. Lacroix, and D. Pagnoux, “Analysis of the birefringence of solid-core air-silica microstructured fibers,” Proc. SPIE pp. 73,570N–73,570N–11 (2009), URL http://link.aip.org/link/PSISDG/v7357/i1/p73570N/s1\&Agg=doi.
  20. P. S. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006), URL http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729. [CrossRef]
  21. E. Pone, A. Hassani, S. Lacroix, A. Kabashin, and M. Skorobogatiy, “Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing,” Opt. Express 15(16), 10231 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-16-10231. [CrossRef] [PubMed]
  22. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009), URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4773307. [CrossRef]
  23. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234 (2005), URL http://ol.osa.org/abstract.cfm?URI=ol-30-10-1234. [CrossRef] [PubMed]
  24. J. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008), URL http://www.opticsinfobase.org/JLT/abstract.cfm?uri=JLT-26-14-2184. [CrossRef]
  25. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197 (2003), URL http://apl.aip.org/applab/v82/i14/p2197_s1. [CrossRef]
  26. Z. Zhu, and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21(2), 249 (2004), URL http://josab.osa.org/abstract.cfm?URI=josab-21-2-249. [CrossRef]
  27. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Opt. 78(4), 1135–1184 (2006), URL http://link.aps.org/doi/10.1103/RevModPhys.78.1135. [CrossRef]
  28. K. Garay-Palmett, H. McGuinness, O. Cohen, J. Lundeen, and R. Rangel-Rojo, A. U’ren, M. Raymer, C. McKinstrie, S. Radic, and I. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15(22), 14870 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14870. [CrossRef] [PubMed]
  29. J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086. [CrossRef] [PubMed]
  30. J. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534 (2005), URL http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534. [CrossRef] [PubMed]
  31. J. Slater, J.-S. Corbeil, S. Virally, F. Bussières, A. Kudlinski, G. Bouwmans, S. Lacroix, N. Godbout, and W. Tittel, “Microstructured fiber source of photon pairs at widely separated wavelengths,” Opt. Lett. 35(4), 499–501 (2010), URL http://www.ncbi.nlm.nih.gov/pubmed/20160797. [CrossRef] [PubMed]
  32. C. Söller, B. Brecht, P. Mosley, L. Zang, A. Podlipensky, N. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” ArXiv (2009), URL http://arxiv.org/abs/0908.2932.
  33. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009), URL http: //link.aps.org/doi/10.1103/PhysRevA.79.023840. [CrossRef]
  34. O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102(12), 123603 (2009), URL http://prl.aps.org/abstract/PRL/ v102/i12/e123603. [CrossRef] [PubMed]
  35. J. Fan, and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency conjugate laser pump pulses,” Opt. Express 13(15), 5777 (2005), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-15-5777. [CrossRef] [PubMed]
  36. B. Smith, P. Mahou, O. Cohen, J. Lundeen, and I. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17(26), 23589 (2009), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-26-23589. [CrossRef]
  37. A. McMillan, J. Fulconis, M. Halder, C. Xiong, J. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156 (2009), URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-8-6156. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited