OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10864–10870

Structured light for focusing surface plasmon polaritons

Z. J. Hu, P. S. Tan, S.W. Zhu, and X.-C. Yuan  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10864-10870 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (7757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

© 2010 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization

Original Manuscript: January 7, 2010
Revised Manuscript: February 19, 2010
Manuscript Accepted: April 12, 2010
Published: May 10, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics
Unconventional Polarization States of Light (2010) Optics Express

Z. J. Hu, P. S. Tan, S.W. Zhu, and X.-C. Yuan, "Structured light for focusing surface plasmon polaritons," Opt. Express 18, 10864-10870 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, Berlin, 1988).
  2. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007). [CrossRef]
  3. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  4. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  5. W. B. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009). [CrossRef] [PubMed]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998). [CrossRef]
  7. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  8. R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009). [CrossRef]
  9. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009). [CrossRef] [PubMed]
  10. L. David, Andrews, Structured Light and Its Applications, Academic Press is an imprint of Elsevier (Elsevier, USA, 2008).
  11. D. W. Zhang and X.-C. Yuan, “Entangled double-helix phase,” Opt. Lett. 28(20), 1864–1866 (2003). [CrossRef] [PubMed]
  12. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4129 . [CrossRef] [PubMed]
  13. J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge, “Variable-radius focused optical vortex with suppressed sidelobes,” Opt. Lett. 31(11), 1600–1602 (2006). [CrossRef] [PubMed]
  14. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005). [CrossRef] [PubMed]
  15. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  16. E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]
  17. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 . [CrossRef] [PubMed]
  18. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 . [PubMed]
  19. Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008). [CrossRef]
  20. http://www.rsoftdesign.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited