OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A272–A285

Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality

Andrew J. Medford, Mathilde R. Lilliedal, Mikkel Jørgensen, Dennis Aarø, Heinz Pakalski, Jan Fyenbo, and Frederik C. Krebs  »View Author Affiliations


Optics Express, Vol. 18, Issue S3, pp. A272-A285 (2010)
http://dx.doi.org/10.1364/OE.18.00A272


View Full Text Article

Enhanced HTML    Acrobat PDF (18453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm−2, and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm2. Panels were mounted on a tracking station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than a month, while R2R encapsulated cells showed around 50% degradation after 6 months but suffered from poor performance due to de-lamination during panel production. A third generation of panels with various barrier layers was produced to optimize the choice of barrier foil and it was found that the inclusion of a thin protective foil between the cell and the barrier foil is critical. The findings provide a preliminary foundation for the production and optimization of large-area polymer solar panels and also enabled a cost analysis of solar panels based on polymer solar cells.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.0160) Materials : Materials
(160.4890) Materials : Organic materials
(160.5140) Materials : Photoconductive materials
(220.4840) Optical design and fabrication : Testing
(250.2080) Optoelectronics : Polymer active devices
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: May 28, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: June 18, 2010
Published: June 29, 2010

Virtual Issues
Focus Issue: Thin-Film Photovoltaic Materials and Devices (2010) Optics Express

Citation
Andrew J. Medford, Mathilde R. Lilliedal, Mikkel Jørgensen, Dennis Aarø, Heinz Pakalski, Jan Fyenbo, and Frederik C. Krebs, "Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality," Opt. Express 18, A272-A285 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Helgesen, R. Søndergaard, and F. C. Krebs, “Advanced materials and processes for polymer solar cell devices,” J. Mater. Chem. 20(1), 36–60 (2009). [CrossRef]
  2. B. Kippelen and J. L. Brédas, “Organic photovoltaics,” Energy Environ. Sci. 2(3), 251–261 (2009). [CrossRef]
  3. I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review,” Energy Environ. Sci. 2(1), 19–34 (2008). [CrossRef]
  4. F. C. Krebs, “Fabrication and processing of polymer solar cells. A review of printing and coating techniques,” Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009). [CrossRef]
  5. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009). [CrossRef]
  6. M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells 92(7), 686–714 (2008). [CrossRef]
  7. E. Bundgaard and F. C. Krebs, “Low band gap polymers for organic photovoltaics,” Sol. Energy Mater. Sol. Cells 91(11), 954–985 (2007). [CrossRef]
  8. F. C. Krebs, J. Alstrup, H. Spangaard, K. Larsen, and E. Kold, “Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate,” Sol. Energy Mater. Sol. Cells 83(2-3), 293–300 (2004). [CrossRef]
  9. F. Krebs, H. Spanggard, T. Kjar, M. Biancardo, and J. Alstrup, “Large Area Plastic Solar Cell Modules,” Mater. Sci. Eng. B 138(2), 106–111 (2007). [CrossRef]
  10. C. Lungenschmied, G. Dennler, H. Neugebauer, N. S. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sol. Energy Mater. Sol. Cells 91(5), 379–384 (2007). [CrossRef]
  11. M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthaar, and A. Gombert, “Organic solar cell modules for specific applications – from energy autonomous systems to large area photovoltaics,” Thin Solid Films 516(20), 7181–7187 (2008). [CrossRef]
  12. R. Tipnis, J. Bernkopf, S. Jia, J. Krieg, S. Li, M. Storch, and D. Laird, “Large-area organic photovoltaic module—Fabrication and performance,” Sol. Energy Mater. Sol. Cells 93(4), 442–446 (2009). [CrossRef]
  13. F. C. Krebs, “Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing,” Sol. Energy Mater. Sol. Cells 93(4), 465–475 (2009). [CrossRef]
  14. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem. 19(30), 5442–5451 (2009). [CrossRef]
  15. F. C. Krebs, “Roll-to-roll fabrication of monolithic large area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells 93(9), 1636–1641 (2009). [CrossRef]
  16. F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron. 10(5), 761–768 (2009). [CrossRef]
  17. F. C. Krebs and K. Norrman, “Using light-induced thermocleavage in a roll-to-roll process for polymer solar cells,” ACS Appl Mater Interfaces 2(3), 877–887 (2010). [CrossRef] [PubMed]
  18. F. C. Krebs, T. Tromholt, and M. Jørgensen, “Upscaling of polymer solar cell fabrication using full roll-to-roll processing,” Nanoscale 2(6), 873–886 (2010). [CrossRef] [PubMed]
  19. F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009). [CrossRef]
  20. F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrøm, and M. S. Pedersen, “Manufacture, integration and demonstration of polymer solar cells in a lamp for the ‘Lighting Africa’ initiative,” Energy Environ. Sci. 3(5), 512–525 (2010). [CrossRef]
  21. F. C. Krebs, J. Fyenbo, and M. Jørgensen, “Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing,” J. Mater. Chem. (accepted).
  22. F. C. Krebs, S. A. Gevorgyan, B. Gholamkhass, S. Holdcroft, C. Schlenker, M. E. Thompson, B. C. Thompson, D. Olson, D. S. Ginley, S. E. Shaheen, H. N. Alshareef, J. W. Murphy, W. J. Youngblood, N. C. Heston, J. R. Reynolds, S. Jia, D. Laird, S. M. Tuladhar, J. G. A. Dane, P. Atienzar, J. Nelson, J. M. Kroon, M. M. Wienk, R. A. J. Janssen, K. Tvingstedt, F. Zhang, M. Andersson, O. Inganäs, M. Lira-Cantu, R. de Bettignies, S. Guillerez, T. Aernouts, D. Cheyns, L. Lutsen, B. Zimmermann, U. Würfel, M. Niggemann, H.-F. Schleiermacher, P. Liska, M. Grätzel, P. Lianos, E. A. Katz, W. Lohwasser, and B. Jannon, “A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules,” Sol. Energy Mater. Sol. Cells 93(11), 1968–1977 (2009). [CrossRef]
  23. T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F. C. Krebs, “Business, market and intellectual property analysis of polymer solar cells,” Sol. Energy Mater. Sol. Cells (2010) http://dx.doi.org/10.1016/j.solmat.2010.04.074 .
  24. M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, and F. C. Krebs, “The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics,” Sol. Energy Mater. Sol. Cells (accepted).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited