OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A411–A420

Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices

Vahid A. Akhavan, Matthew G. Panthani, Brian W. Goodfellow, Dariya K. Reid, and Brian A. Korgel  »View Author Affiliations

Optics Express, Vol. 18, Issue S3, pp. A411-A420 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports our latest results using colloidal CuInSe2 nanocrystal inks to prepare photovoltaic (PV) devices. Thus far, devices with nanocrystal layers processed under ambient conditions with no post-deposition treatment have achieved power conversion efficiencies of up to 3.1%. Device efficiency is largely limited by charge carrier trapping in the nanocrystal layer, and the highest device efficiencies are obtained with very thin layers—less than 150 nm—absorbing only a fraction of the incident light. Devices with thicker nanocrystal layers had lower power conversion efficiency, despite the increased photon absorption, because the internal quantum efficiency of the devices decreased significantly. The thin, most efficient devices exhibited internal quantum efficiencies as high as 40%, across a wide spectrum. Mott-Schottky measurements revealed that the active region thickness in the devices is approximately 50 nm.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:

Original Manuscript: July 12, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 13, 2010
Published: August 20, 2010

Virtual Issues
Focus Issue: Thin-Film Photovoltaic Materials and Devices (2010) Optics Express

Vahid A. Akhavan, Matthew G. Panthani, Brian W. Goodfellow, Dariya K. Reid, and Brian A. Korgel, "Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices," Opt. Express 18, A411-A420 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. Lond. 365(1853), 993–1005 (2007). [CrossRef]
  2. R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010). [CrossRef]
  3. L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview,” J. Electron Spectrosc. Relat. Phenom. 150(2-3), 105–135 (2006). [CrossRef]
  4. P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993). [CrossRef]
  5. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997). [CrossRef]
  6. K. E. Knapp, and T. L. Jester, “Energy balances for photovoltaic modules: status and prospects” Proc. of 28th IEEE Photovoltaic Specialist Conf, Piscataway (2000).
  7. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010). [CrossRef] [PubMed]
  8. A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002). [CrossRef]
  9. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005). [CrossRef] [PubMed]
  10. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008). [CrossRef] [PubMed]
  11. W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009). [CrossRef] [PubMed]
  12. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008). [CrossRef]
  13. J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009). [CrossRef] [PubMed]
  14. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010). [CrossRef] [PubMed]
  15. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008). [CrossRef] [PubMed]
  16. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009). [CrossRef] [PubMed]
  17. Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009). [CrossRef] [PubMed]
  18. Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008). [CrossRef] [PubMed]
  19. L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993). [CrossRef]
  20. B. E. McCandless, and W. N. Shafarman, U.S. Patent 6,537,845, 2003.
  21. A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005). [CrossRef]
  22. U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999). [CrossRef]
  23. A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995). [CrossRef]
  24. M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997). [CrossRef]
  25. V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited