OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11052–11057

Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber

Zhangwei Yu, M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11052-11057 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Actively Q-switching of an all-fiber laser system is demonstrated. The active element is a polarization switch with nanosecond risetime based on a microstructured fiber with electrically driven internal electrodes. Optical feedback between two 100% reflectors is inhibited until a nanosecond current pulse Q-switches the laser. After a short optical pulse develops several roundtrips later, the fiber switch is turned off, removing the short optical pulse from the cavity through a polarization splitter. Pulses of 50 W peak power and ~12 ns duration are obtained with 400 mW pump power at 100 Hz.

© 2010 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 12, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: April 30, 2010
Published: May 11, 2010

Zhangwei Yu, M. Malmström, O. Tarasenko, W. Margulis, and F. Laurell, "Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber," Opt. Express 18, 11052-11057 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999). [CrossRef]
  2. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74(24), 3619–3621 (1999). [CrossRef]
  3. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett. 24(6), 388–390 (1999). [CrossRef]
  4. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16(26), 22058–22063 (2008). [CrossRef] [PubMed]
  5. T.-Y. Tsai and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009). [CrossRef] [PubMed]
  6. T.-Y. Tsai and Y.-C. Fang, “A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser,” Opt. Express 17(24), 21628–21633 (2009). [CrossRef] [PubMed]
  7. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009). [CrossRef] [PubMed]
  8. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997). [CrossRef] [PubMed]
  9. A. A. Fotiadi, O. Deparis, R. Kiyan, S. Chernikov, and A. Ikiades, “Dynamics of passive Q-switching in SBS/Er fiber laser at low pump power,” Proc. SPIE 4354, 125–134 (2001). [CrossRef]
  10. Z. Pan, L. Meng, Q. Ye, H. Cai, Z. Fang, and R. Qu, “Repetition rate stabilization of the SBS Q-switched fiber laser by external injection,” Opt. Express 17(5), 3124–3129 (2009). [CrossRef] [PubMed]
  11. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006). [CrossRef]
  12. A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993). [CrossRef]
  13. D.-W. Huang, W.-F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000). [CrossRef]
  14. D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “High-repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244(1-6), 315–319 (2005). [CrossRef]
  15. C. Cuadrado-Laborde, M. Delgado-Pinar, S. Torres-Peiró, A. Díez, and M. V. Andrés, “Q-switched all-fiber laser using a fibre-optic resonant acousto-optic modulator,” Opt. Commun. 274(2), 407–411 (2007). [CrossRef]
  16. K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31(24), 3568–3570 (2006). [CrossRef] [PubMed]
  17. M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006). [CrossRef] [PubMed]
  18. M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett. 5(2), 93–99 (2008). [CrossRef]
  19. C. Cuadrado-Laborde, A. Díez, J. L. Cruz, and M. V. Andrés, “Doubly active Q switching and mode locking of an all-fiber laser,” Opt. Lett. 34(18), 2709–2711 (2009). [CrossRef] [PubMed]
  20. N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficient Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210(3-6), 361–366 (2002). [CrossRef]
  21. X. P. Cheng, C. H. Tse, P. Shum, R. F. Wu, M. Tang, W. C. Tan, and J. Zhang, “All-Fiber Q-Switched erbium-doped fiber ring laser using phase-shifted fiber Bragg grating,” J. Lightwave Technol. 26(8), 945–951 (2008). [CrossRef]
  22. P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Opt. Express 13(13), 5046–5051 (2005). [CrossRef] [PubMed]
  23. F.-W. Sheu and J.-J. Kang, “All-fiber actively Q-switched fiber laser tuned by a pair of temperature controlled fiber Bragg gratings,” Opt. Commun. 278(1), 132–137 (2007). [CrossRef]
  24. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009). [CrossRef] [PubMed]
  25. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007). [CrossRef] [PubMed]
  26. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34(7), 1024–1026 (2009). [CrossRef] [PubMed]
  27. A. Gusarov, N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14(12), 2771–2777 (1996). [CrossRef]
  28. M. Malmström, W. Margulis, Z. Yu, O. Tarasenko, and F. Laurell, “All-fiber Q-switched and cavity dumped laser using an electrically addressed microstructured fiber,” in Advanced Solid-State Conference, Technical Digest (CD) (Optical Society of America, 2010), paper AMB8). http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2010-AMB8

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited