OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11607–11621

High resolution multimodal clinical ophthalmic imaging system

Mircea Mujat, R. Daniel Ferguson, Ankit H. Patel, Nicusor Iftimia, Niyom Lue, and Daniel X. Hammer  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11607-11621 (2010)
http://dx.doi.org/10.1364/OE.18.011607


View Full Text Article

Enhanced HTML    Acrobat PDF (8628 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

© 2010 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.5755) Medical optics and biotechnology : Retina scanning
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 22, 2010
Revised Manuscript: April 29, 2010
Manuscript Accepted: May 8, 2010
Published: May 18, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics
May 18, 2010 Spotlight on Optics

Citation
Mircea Mujat, R. Daniel Ferguson, Ankit H. Patel, Nicusor Iftimia, Niyom Lue, and Daniel X. Hammer, "High resolution multimodal clinical ophthalmic imaging system," Opt. Express 18, 11607-11621 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 . [PubMed]
  4. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8532 . [CrossRef] [PubMed]
  5. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4380 . [CrossRef] [PubMed]
  6. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007). [CrossRef]
  7. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  8. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]
  9. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014–1019 (2006). [CrossRef]
  10. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008). [CrossRef] [PubMed]
  11. K. Kurokawa, S. Makita, and Y. Yasuno, “1 mu m wavelength adaptive optics scanning laser ophthalmoscope”, in Ophthalmic Technologies XIX, F. Manns, P.G. Soderberg, and A. Ho, eds., Proc. SPIE 7163, 71630I, 2009.
  12. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8515 . [CrossRef] [PubMed]
  13. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 . [CrossRef] [PubMed]
  14. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3252 . [CrossRef] [PubMed]
  15. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  16. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12(4), 041211 (2007). [CrossRef] [PubMed]
  17. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive Optics Scanning Laser Ophthalmoscopy Images Demonstrate Abnormal Cone Structure in a Family with the Mitochondrial DNA T8993C Mutation,” Invest. Ophthalmol. Vis. Sci. doi:10.1167/iovs.08–2029 (2008).
  18. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19382 . [CrossRef] [PubMed]
  19. J. R. Zawadzki, M. S. Jones, D. Chen, S. S. Choi, W. J. Evans, S. S. Olivier, and S. J. Werner, “Combined adaptive optics: optical coherence tomography and adaptive optics: scanning laser ophthalmoscopy system for retinal imaging”, in Ophthalmic Technologies XIX, F. Manns, P. Soderberg, and A. Ho, eds., Proc. SPIE 7163, 71630F (2009).
  20. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, Z. Deng, W. Zou, and S. A. Burns, “Adaptive optics SLO with integrated wide-field retinal imaging and tracking,” submitted to J. Opt. Soc. Am.A (2010).
  21. D. X. Hammer, M. Mujat, N. Iftimia, N. Lue, and D. Ferguson, “Multimodal Adaptive Optics for Depth Enhanced High Resolution Ophthalmic Imaging”, in Ophthalmic Technologies XX, F. Manns, P. G. Söderberg, and A. Ho, eds., Proc. SPIE 7163, 71630J (2010).
  22. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008). [CrossRef] [PubMed]
  23. A.N.S.I. (ANSI), American National Standard for the Safe Use of Lasers. 2000, American National Standard Institute, Inc.
  24. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum Permissible Exposures for Ocular Safety (ANSI 2000), with Emphasis on Ophthalmic Devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007). [CrossRef]
  25. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef]
  26. Y. L. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16390 . [CrossRef] [PubMed]
  27. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10(26), 1542–1549 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-26-1542 . [PubMed]
  28. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, “Compact scanning laser ophthalmoscope with high-speed retinal tracker,” Appl. Opt. 42(22), 4621–4632 (2003). [CrossRef] [PubMed]
  29. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006). [CrossRef] [PubMed]
  30. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354 . [CrossRef] [PubMed]
  31. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008). [CrossRef] [PubMed]
  32. D. Lowe, “Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image,” US Patent number: 6,711,293 (2004).
  33. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242 . [CrossRef] [PubMed]
  34. P. J. Burt and E. H. Adelson, “A Multiresolution Spline with Application to Image Mosaics,” ACM Trans. Graph. 2(4), 217–236 (1983). [CrossRef]
  35. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9(2), 169–180 (1992). [CrossRef] [PubMed]
  36. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006). [CrossRef] [PubMed]
  37. B. Potsaid, J. Liu, Y. Chen, I. Gorczynska, V. J. Srinivasan, S. Barry, J. Jiang, A. Cable, V. Manjunath, J. S. Duker, and G. J. Fujimoto, “Ultrahigh speed volumetric OCT ophthalmic imaging at 800nm and 1050nm”, in Ophthalmic Technologies XX, F. Manns, P.G. Soderberg, and A. Ho, eds., Proc. SPIE 7163, 2010.
  38. T. Y. P. Chui, H. X. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3210 KB)     
» Media 2: MOV (12827 KB)     
» Media 3: MOV (2331 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited