OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11859–11866

An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film

Nebiyu A. Yebo, Petra Lommens, Zeger Hens, and Roel Baets  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11859-11866 (2010)
http://dx.doi.org/10.1364/OE.18.011859


View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 µm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: March 26, 2010
Revised Manuscript: May 5, 2010
Manuscript Accepted: May 7, 2010
Published: May 20, 2010

Citation
Nebiyu A. Yebo, Petra Lommens, Zeger Hens, and Roel Baets, "An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film," Opt. Express 18, 11859-11866 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008). [CrossRef]
  2. M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007). [CrossRef]
  3. B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005). [CrossRef]
  4. I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008). [CrossRef]
  5. S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009). [CrossRef]
  6. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004). [CrossRef]
  7. A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010). [CrossRef]
  8. P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).
  9. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009). [CrossRef] [PubMed]
  10. Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16(14), 10254–10268 (2008). [CrossRef] [PubMed]
  11. N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009). [CrossRef]
  12. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  13. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  14. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009). [CrossRef]
  15. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009). [CrossRef] [PubMed]
  16. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  17. B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008). [CrossRef]
  18. J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008). [CrossRef]
  19. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000). [CrossRef]
  20. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009). [CrossRef]
  21. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003). [CrossRef] [PubMed]
  22. P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008). [CrossRef] [PubMed]
  23. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009). [CrossRef] [PubMed]
  24. P. Atkins, and J. de Paula, Atkins, Physical Chemistry, 7th ed. (Oxford Univ. Press, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited