OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11898–11903

Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides

Shiming Gao, En-Kuang Tien, Qi Song, Yuewang Huang, and Ozdal Boyraz  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11898-11903 (2010)
http://dx.doi.org/10.1364/OE.18.011898


View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultra-broadband wavelength conversion is presented and experimentally demonstrated based on nondegenerate four-wave mixing in silicon waveguides. Two idlers can be generated and their wavelengths can be freely tuned by using two pumps where the first pump is set close to the signal and the second pump is wavelength tunable. Using this scheme, a small phase-mismatch and hence an ultra-broad conversion bandwidth is realized in spite of the waveguide dispersion profile. We show that the experimental demonstrations are consistent with the theoretical estimations. Total conversion bandwidth is estimated to reach >500 nm and it can provide a feasible approach to realize one-to-two wavelength conversion among different telecommunication bands between 1300 nm and 1800 nm.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 6, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 10, 2010
Published: May 20, 2010

Citation
Shiming Gao, En-Kuang Tien, Qi Song, Yuewang Huang, and Ozdal Boyraz, "Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides," Opt. Express 18, 11898-11903 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full Ethernet services in FTTx,” J. Lightwave Technol. 22(11), 2631–2640 (2004). [CrossRef]
  3. S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004). [CrossRef]
  4. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006). [CrossRef]
  5. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006). [CrossRef]
  6. Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006). [CrossRef]
  7. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-3-1182 . [CrossRef] [PubMed]
  8. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]
  9. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010). [CrossRef]
  10. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-12-4629 . [CrossRef] [PubMed]
  11. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4786 . [CrossRef] [PubMed]
  12. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009). [CrossRef]
  13. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-10-4357 . [CrossRef] [PubMed]
  14. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-18-3-1904 . [CrossRef] [PubMed]
  15. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited