OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12136–12143

Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam

Masaaki Sakakura, Tsutomu Sawano, Yasuhiko Shimotsuma, Kiyotaka Miura, and Kazuyuki Hirao  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12136-12143 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple light spots can be generated by modulating the spatial phase distribution of laser beam with a spatial light modulator (SLM). In this paper, we demonstrate the fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass by focusing multiple light spots of femtosecond (fs) laser pulses, which can be controlled by switching spatial phase distributions on an SLM. In the conventional fs laser writing technique, a highly precise positioning of a substrate is essential for fabricating a branched waveguide in a splitter. Using the technique proposed in this paper, a continuously branched waveguide can be produced easily by translating a glass substrate only one time; therefore this technique can eliminate the need for a high precision in positioning of a substrate and save a fabrication time.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(230.6120) Optical devices : Spatial light modulators
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Microfabrication

Original Manuscript: April 20, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 19, 2010
Published: May 24, 2010

Masaaki Sakakura, Tsutomu Sawano, Yasuhiko Shimotsuma, Kiyotaka Miura, and Kazuyuki Hirao, "Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam," Opt. Express 18, 12136-12143 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Keck, A. J. Morrow, D. A. Nolan, and D. A. Thompson, “Passive Components in the Subscriber Loop,” J. Lightwave Technol. 7(11), 1623–1633 (1989). [CrossRef]
  2. M. H. Hu, J. Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood., “A low-loss and compact waveguide Y-branch using refractive-index tapering,” IEEE Photon. Technol. Lett. 9(2), 203–205 (1997). [CrossRef]
  3. H. Takahashi, Y. Ohmori, and M. Kawachi, “Design and fabrication of silica-based integrated-optic 1X128 power splitter,” Electron. Lett. 27(23), 2131–2133 (1991). [CrossRef]
  4. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode wave-guides on silicon and their application to guide-wave optical interferometers,” J. Lightwave Technol. 6(6), 1003–1010 (1988). [CrossRef]
  5. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21(8), 618–620 (1996). [CrossRef] [PubMed]
  6. T. G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, and R. A. Andrews, “Optical waveguides formed by thermal migration of ions in glass,” Appl. Opt. 12(6), 1240–1245 (1973). [CrossRef] [PubMed]
  7. S. M. Garner, V. Sang-Shin Lee, A. Chuyanov, A. Chen, W. H. Yacoubian, Steier, L. R. Dalton, S. S Lee, V Chuyanov, A Chen, A Yacoubian, W. H. Steier, and L. R Dalton, “Three-Dimensional Integrated Optics Using Polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999). [CrossRef]
  8. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994). [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  10. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26(19), 1516–1518 (2001). [CrossRef]
  11. M. Ams, G. D. Marshall, D. Spence, J. M. Dawes, J. A. Piper, and M. J. Withford, “Direct writing of guided wave devices inside bulk glass using femtosecond lasers,” AOS News 19, 8–11 (2005).
  12. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, ““Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys,” Adv. Mater. 77, 109–111 (2003).
  13. W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008). [CrossRef] [PubMed]
  14. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005). [CrossRef]
  15. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009). [CrossRef] [PubMed]
  16. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009). [CrossRef] [PubMed]
  17. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009). [CrossRef]
  18. M. Pospiech, M. Emons, B. Väckenstedt, G. Palmer, and U. Morgner, “Single-sweep laser writing of 3D-waveguide devices,” Opt. Express 18(7), 6994–7001 (2010). [CrossRef] [PubMed]
  19. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, Y11 (2007).
  20. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33(29), 6879–6884 (1994). [CrossRef] [PubMed]
  21. K. Iizuka, Engineering optics (Springer-Verlag, Berlin; Tokyo, 1985)
  22. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001). [CrossRef]
  23. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  24. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (4067 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited