OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12543–12551

Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars

Wolfgang-Michael Schulz, Tim Thomay, Marcus Eichfelder, Moritz Bommer, Michael Wiesner, Robert Roßbach, Michael Jetter, Rudolf Bratschitsch, Alfred Leitenstorfer, and Peter Michler  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12543-12551 (2010)
http://dx.doi.org/10.1364/OE.18.012543


View Full Text Article

Enhanced HTML    Acrobat PDF (3069 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using focused ion beam etching techniques, micropillar cavities were fabricated from a high reflective AlAs/AlGaAs distributed Bragg reflector planar cavity containing self-assembled InP quantum dots in (Al0.20Ga0.80)0.51In0.49P barrier layers. The mode spectra of pillars with different diameters were investigated using micro-photoluminescence, showing excellent agreement with theory. Quality factors of the pillar cavities up to 3650 were observed. Furthermore, for a microcavity pillar with 1.26 µm diameter, single-photon emission is demonstrated by performing photon correlation measurements under pulsed excitation.

© 2010 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1480) Optical devices : Bragg reflectors
(230.5750) Optical devices : Resonators
(270.5290) Quantum optics : Photon statistics

ToC Category:
Optical Devices

History
Original Manuscript: February 17, 2010
Revised Manuscript: April 22, 2010
Manuscript Accepted: May 3, 2010
Published: May 27, 2010

Citation
Wolfgang-Michael Schulz, Tim Thomay, Marcus Eichfelder, Moritz Bommer, Michael Wiesner, Robert Roßbach, Michael Jetter, Rudolf Bratschitsch, Alfred Leitenstorfer, and Peter Michler, "Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars," Opt. Express 18, 12543-12551 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12543


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982). [CrossRef]
  2. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005). [CrossRef]
  3. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000). [CrossRef]
  4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000). [CrossRef] [PubMed]
  5. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001). [CrossRef] [PubMed]
  6. M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002). [CrossRef]
  7. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007). [CrossRef] [PubMed]
  8. H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008). [CrossRef]
  9. K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009). [CrossRef]
  10. T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008). [CrossRef] [PubMed]
  11. H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005). [CrossRef]
  12. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191 (2007). [CrossRef] [PubMed]
  13. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010). [CrossRef]
  14. M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008). [PubMed]
  15. W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009). [CrossRef]
  16. G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000). [CrossRef] [PubMed]
  17. H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001). [CrossRef]
  18. I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).
  19. M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009). [CrossRef]
  20. LayTec GmbH, Berlin, Germany, www.laytec.de.
  21. R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956). [CrossRef]
  22. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996). [CrossRef]
  23. T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999). [CrossRef]
  24. S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001). [CrossRef]
  25. C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009). [CrossRef]
  26. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294 (2000). [CrossRef]
  27. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited