OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13122–13135

On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing

Othman H. Y. Zalloum, Matthew Parrish, Alexander Terekhov, and William Hofmeister  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13122-13135 (2010)
http://dx.doi.org/10.1364/OE.18.013122


View Full Text Article

Enhanced HTML    Acrobat PDF (11602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the formation of diversiform micro-/nano-structures in High-Pressure High-Temperature (HPHT) synthetic single-crystal diamond by tight-focusing 200 fs regeneratively amplified Ti: Sapphire laser pulses centered at λ = 800 nm. Ablated samples of synthetic single crystal nanodiamond and their acetate replicas are analyzed using scanning electron microscopy (SEM). Using pulse energies that are significantly above the threshold for permanent change, it is shown from this work that amplified femtosecond pulses are capable of producing controlled modification of HPHT single-crystal diamond at size scales below the diffraction limit and provided negligible collateral heating and shock-wave damage. This is attributed to the low thermal losses and negligible hydrodynamic expansion of the ablated material during the femtosecond laser pulse. It is shown that low pulse energy is a key factor for the accurate and precise machining of micropattems.

© 2010 OSA

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 29, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: May 29, 2010
Published: June 3, 2010

Citation
Othman H. Y. Zalloum, Matthew Parrish, Alexander Terekhov, and William Hofmeister, "On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing," Opt. Express 18, 13122-13135 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  3. E. Mazur, “Applications of femtosecond lasers in materials processing,” in Conference on Lasers and Electro-Optics Europe (Munich, Germany, 2009).
  4. J. Perriere, E. Millon, and E. Fogarassy, eds., Recent Advances in Laser Processing of Materials (Elsevier, 2006).
  5. H. Misawa, and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
  6. C. Phipps, ed., Laser Ablation and its Applications (Springer, New York, 2007).
  7. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  8. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003). [CrossRef]
  9. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  10. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002). [PubMed]
  11. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005). [CrossRef]
  12. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007). [CrossRef] [PubMed]
  13. B. Qian, J. Song, G. P. Dong, L. B. Su, B. Zhu, X. F. Liu, S. Z. Sun, Q. Zhang, and J. R. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express 17(10), 8552–8557 (2009). [CrossRef] [PubMed]
  14. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15(25), 16800–16807 (2007). [CrossRef] [PubMed]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004). [CrossRef] [PubMed]
  16. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Sel. Top. Quantum Electron. 10(3), 375–386 (1974). [CrossRef]
  17. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002). [CrossRef]
  18. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  19. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  20. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997). [CrossRef]
  21. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007). [CrossRef] [PubMed]
  22. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996). [CrossRef] [PubMed]
  23. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999). [CrossRef]
  24. F. Ahmed and M. S. Lee, “Micromachining of Grooves for Cutting Fused Silica Plates with Femtosecond Laser Pulses,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, (Optical Society of America, 2007), paper TuB2_3.
  25. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).
  26. M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006). [CrossRef]
  27. D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002). [CrossRef]
  28. M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003). [CrossRef]
  29. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006). [CrossRef]
  30. J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999). [CrossRef]
  31. W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).
  32. http://www.diamondedgeco.com/11533.html, “High Quality Diamond Knives,” (Diamond Edge Company, 2010), Accessed 05/24/2010.
  33. D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005). [CrossRef]
  34. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  35. K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008). [CrossRef]
  36. Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007). [CrossRef]
  37. Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008). [CrossRef]
  38. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005). [CrossRef]
  39. T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Appl. Phys. Lett. 79(22), 3699–3701 (2001). [CrossRef]
  40. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).
  41. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009). [CrossRef]
  42. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002). [CrossRef]
  43. K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005). [CrossRef]
  44. M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006). [CrossRef]
  45. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973). [CrossRef]
  46. Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982). [CrossRef]
  47. A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004). [CrossRef]
  48. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited