OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13239–13249

In-situ determination of astro-comb calibrator lines to better than 10 cm s−1

Chih-Hao Li, Alexander G. Glenday, Andrew J. Benedick, Guoqing Chang, Li-Jin Chen, Claire Cramer, Peter Fendel, Gabor Furesz, Franz X. Kärtner, Sylvain Korzennik, David F. Phillips, Dimitar Sasselov, Andrew Szentgyorgyi, and Ronald L. Walsworth  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 13239-13249 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: April 8, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: May 24, 2010
Published: June 4, 2010

Chih-Hao Li, Alexander G. Glenday, Andrew J. Benedick, Guoqing Chang, Li-Jin Chen, Claire Cramer, Peter Fendel, Gabor Furesz, Franz X. Kärtner, Sylvain Korzennik, David F. Phillips, Dimitar Sasselov, Andrew Szentgyorgyi, and Ronald L. Walsworth, "In-situ determination of astro-comb calibrator lines to better than 10 cm s-1," Opt. Express 18, 13239-13249 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lovis, M. Mayor, F. Pepe, Y. Alibert, W. Benz, F. Bouchy, A. C. M. Correia, J. Laskar, C. Mordasini, D. Queloz, N. C. Santos, S. Udry, J.-L. Bertaux, and J.-P. Sivan, “An extrasolar planetary system with three Neptune-mass planets,” Nature 441, 305–309 (2006). [CrossRef] [PubMed]
  2. A. Sandage, “The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes,” Astrophys. J. 136, 319–333 (1962). [CrossRef]
  3. A. Loeb, “Direct measurement of cosmological parameters from the cosmic deceleration of selected expanding universes,” Astrophys. J. 499, L111–L114 (1998). [CrossRef]
  4. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]
  5. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007). [CrossRef]
  6. P. O. Schmidt, S. Kimeswenger, and H. U. Kaeufl, “A new generation of spectrometer calibration techniques based on optical frequency combs,” in Proc. 2007 ESO Instrument Calibration Workshop (ESO Astrophysics Symposia series, Springer, in the press)
  7. C. Araujo-Hauck, L. Pasquini, A. Manescau, T. Udem, T. W. Hänsch, R. Holzwarth, A. Sizmann, H. Dekker, S. D’Odorico, and M. T. Murphy, “Future wavelength calibration standards at ESO: the laser frequency comb,” ESO Messenger 129, 24–26 (2007).
  8. S. Osterman, S. Diddmas, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, and A. Weiner, “proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy,” in Proc. SPIE, 6693, G1 (2007).
  9. C.-H. Li, A. Benedick, P. Fendel, A. Glenday, F. Kärtner, D. Phillips, D. Sasselov, A. Szentgyorgyi, and R. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature 208, 610–612 (2008). [CrossRef]
  10. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008). [CrossRef] [PubMed]
  11. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad- spectrum frequency combs,” Eur. Phys. J. D 48, 57 (2008). [CrossRef]
  12. C. Lovis, F. Pepe, F. Bouchy, G. L. Curto, M. Mayor, L. Pasquini, D. Queloz, G. Rupprecht, S. Udry, and S. Zucker, “The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s−1 precision,” Proc. SPIE 6269, 62690P1–62690P23 (2006).
  13. S. Udry, X. Bonfils, X. Delfosse, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, C. Lovis, F. Pepe, D. Queloz, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets. xi. super-earths (5 and 8 M⊕) in a 3-planet system,” Astron. Astrophys. 469, L43–L47 (2007). [CrossRef]
  14. M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13, 882–888 (2005). [CrossRef] [PubMed]
  15. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, “Complete characterization of a broadband high-nesse cavity using an optical frequency comb,” Opt. Express 14, 5975–5983 (2006). [CrossRef] [PubMed]
  16. G. Furesz, “Design and application of high resolution and multiobject spectrographs: Dynamical studies of open clusters,” Ph.D. thesis, University of Szeged, Hungary (2008).
  17. A. Yariv, and P. Yeh, Photonics (Oxford University Press, Oxford, 2006).
  18. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996). [CrossRef] [PubMed]
  19. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34, 872 (2009). [CrossRef] [PubMed]
  20. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96, 251 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited