OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13361–13367

Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum

Gang Sheng Zhang and Zeng Qiong Huang  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13361-13367 (2010)
http://dx.doi.org/10.1364/OE.18.013361


View Full Text Article

Enhanced HTML    Acrobat PDF (6600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we report a two-dimensional amorphous photonic structure (2D APS) discovered in the ligament of bivalve Lutraria maximum, based on scanning electron microscopy and fiber optic spectrometry combined with the image processing technology and pair correlation function analysis. This structure contains 70% in volume of parallel aragonite fibers embedded in a protein matrix. These fibers, in cross section, are hexagonal to polygonal with diameters of 194nm and are packed in short-range order with a nearest-neighbor distance of 202nm. Moreover, experimentally measured reflectance spectrum and theoretical predictions prove that this photonic structure gives rise to a golden structural color with the peak wavelength at about 650nm. We expect this unraveled structure may inspire the design and synthesis of a novel 2D APS.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Photonic Crystals

History
Original Manuscript: April 20, 2010
Revised Manuscript: May 29, 2010
Manuscript Accepted: June 2, 2010
Published: June 7, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Gang Sheng Zhang and Zeng Qiong Huang, "Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum," Opt. Express 18, 13361-13367 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003). [CrossRef] [PubMed]
  2. V. L. Welch, “Photonic crystals in biology,” In Structural Colours in Biological Systems, S. Kinoshita and S.Yoshioka, ed. (Osaka University, Osaka, 2005), pp. 53–71.
  3. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nat. Photonics 1(2), 123–128 (2007). [CrossRef]
  4. G. Cook, P. L. Timms, and C. Göltner-Spickermann, “Exact replication of biological structures by chemical vapor deposition of silica,” Angew. Chem. Int. Ed. Engl. 42(5), 557–559 (2003). [CrossRef] [PubMed]
  5. J. W. Galusha, M. R. Jorgensen, and M. H. Bartl, “Diamond-structured titania photonic-bandgap crystals from biological templates,” Adv. Mater. 22(1), 107–110 (2010). [CrossRef] [PubMed]
  6. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008). [CrossRef]
  7. A. R. Parker, “Natural photonics for industrial inspiration,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1894), 1759–1782 (2009). [CrossRef] [PubMed]
  8. L. P. Biró and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. (to be published).
  9. R. O. Prum and R. H. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206(14), 2409–2429 (2003). [CrossRef] [PubMed]
  10. R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003). [CrossRef] [PubMed]
  11. R. O. Prum and R. H. Torres, “Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 207(12), 2157–2172 (2004). [CrossRef] [PubMed]
  12. P. H. Raven, and G. B. Johnson, Biology, 6th edition (McGraw Hill, New York, 2002), pp. 905. [PubMed]
  13. G. Bevelander and H. Nakahara, “An electron microscope study of the formation of the ligament of Mytilus edulis and Pinctada radiate,” Calcif. Tissue Res. 4(1), 101–112 (1969). [CrossRef] [PubMed]
  14. G. A. Kahler, R. L. Sass, and F. M. Fisher, “The fine structure and crystallography of the ligament of Spisula solidissima (Mollusca: Bivalvia: Mactridae),” J. Comp. Physiol. 109, 209–220 (1976).
  15. T. R. Waller, “The evolution of ligament systems in the Bivalvia,” in The Bivalvia, B. Morton, ed. (Hong Kong University, Hong Kong, 1990). pp. 49–71.
  16. T. Ubukata, “A theoretical morphologic analysis of bivalve ligaments,” Paleobiology 29(3), 369–380 (2003). [CrossRef]
  17. G. S. Zhang, “Photonic crystal type structure in bivalve ligament of Pinctada maxima,” Chin. Sci. Bull. 52(8), 1136–1138 (2007). [CrossRef]
  18. G. S. Zhang and H. X. Li, “Nanomorphologies of aragonitic fibers and optical reflections of bivalve ligaments,” J. Mineral. Petrol. 28(3), 9–13 (2008) (in Chinese).
  19. A. Baddeley and R. Turner, “Spatstat: an R package for analyzing spatial point patterns,” J. Stat. Softw. 12, 1–42 (2005).
  20. A. D. Ambrosis, P. Mascheretti, and P. Tedesco, “Using the idea of correlation to understand liquid behaviour,” Phys. Educ. 41(1), 63–68 (2006). [CrossRef]
  21. J. P. Vigneron, J. M. Pasteels, D. M. Windsor, Z. Vértesy, M. Rassart, T. Seldrum, J. Dumont, O. Deparis, V. Lousse, L. P. Biró, D. Ertz, and V. Welch, “Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031907 (2007). [CrossRef] [PubMed]
  22. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009). [CrossRef] [PubMed]
  23. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  24. C. Jin, X. Meng, B. Cheng, Z. Li, and D. Zhang, “Photonic gap in amorphous photonic materials,” Phys. Rev. B 63(19), 195107 (2001). [CrossRef]
  25. F. Scheffold, L. F. Rojas, M. Reufer, P. Schurtenberger, A. Stradner, L. Froufe, and J. J. Saenz, “Photonic properties of strongly correlated colloidal liquids,” Proc. SPIE 5840, 456–463 (2005). [CrossRef]
  26. K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003). [CrossRef] [PubMed]
  27. O. B. Bøggild, “The shell structure of the mollusks,” K. Danske Vid. Selsk. Skr. 9(2), 233–326 (1930).
  28. M. R. Snow, M. R. Snow, A. Pring, P. Self, D. Losic, and J. Shapter, “The origin of the color of pearls in iridescence from nano-composite structures of the nacre,” Amer. Miner. 89, 1353–1358 (2004).
  29. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48(21), 4177–4190 (2009). [CrossRef] [PubMed]
  30. D. Zhu, S. Kinoshita, D. Cai, and J. B. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 051924 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited