OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13529–13535

Optical time division multiplexer on silicon chip

Abdelsalam A. Aboketaf, Ali W. Elshaari, and Stefan F. Preble  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13529-13535 (2010)
http://dx.doi.org/10.1364/OE.18.013529


View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The fabricated devices generate 20 Gb/s and 40 Gb/s signals starting from a 5 Gb/s input signal. The proposed design has a small footprint of 1mmx1mm. The system is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip.

© 2010 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 21, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 2, 2010
Published: June 8, 2010

Citation
Abdelsalam A. Aboketaf, Ali W. Elshaari, and Stefan F. Preble, "Optical time division multiplexer on silicon chip," Opt. Express 18, 13529-13535 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Petracca, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip: opportunities and challenges,” in IEEE International Symposium on Circuits and Systems, (ISCAS 2008), pp. 2789–2792 (2008)
  2. B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007). [CrossRef]
  3. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006). [CrossRef] [PubMed]
  4. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007). [CrossRef] [PubMed]
  5. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  6. A. Biberman, B. G. Lee, K. Bergman, P. Dong, and M. Lipson, “Demonstration of all-optical multi-wavelength message routing for silicon photonic networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF6.
  7. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998). [CrossRef]
  8. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000). [CrossRef]
  9. H. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Technol. 24(12), 4616–4627 (2006). [CrossRef]
  10. M. Pu, H. Ji, L. H. Frandsen, M. Galili, L. K. Oxenløwe, and J. M. Hvam, “High-Q microring resonator with narrow free spectral range for pulse repetition rate multiplication,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThBB7.
  11. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]
  12. L.-W. Luo, S. Ibrahim, C. B. Poitras, S. S. Djordjevic, H. Lira, L. Zhou, J. Cardenas, B. Guan, A. Nitkowski, Z. Ding, S. J. Yoo, and M. Lipson, “Fully reconfigurable silicon photonic interleaver,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CFL5.
  13. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007). [CrossRef] [PubMed]
  14. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007). [CrossRef] [PubMed]
  15. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  17. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  18. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  19. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  20. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009). [CrossRef]
  21. K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited