OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13754–13760

Liquid filled microstructured optical fiber for x-ray detection

S. L. DeHaven, S. Albin, and W.C. Kelliher  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13754-13760 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A liquid filled microstructured optical fiber (MOF) is used to detect x-rays. Numerical analysis and experimental observation leads to geometric fiber optics theory for MOF photon transmission. A model using this theory relates the quantity and energy of absorbed x-ray photons to transmitted MOF generated photons. Experimental measurements of MOF photon quantities compared with calculated values show good qualitative agreement. The difference between the calculated and measured values is discussed.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:

Original Manuscript: February 10, 2010
Revised Manuscript: April 22, 2010
Manuscript Accepted: May 27, 2010
Published: June 11, 2010

S. L. DeHaven, S. Albin, and W.C. Kelliher, "Liquid filled microstructured optical fiber for x-ray detection," Opt. Express 18, 13754-13760 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wang and L. Wang, “Liquid-filled microstructured polymer fibers as monolithic liquid-core array fibers,” Appl. Opt. 48(5), 881–885 (2009). [CrossRef] [PubMed]
  2. T. Nasilowski, et al., “Sensing with photonic crystal fibers,” Intelligent Signal Processing, WISP 2007 IEEE International Symposium on, 1–6, (Oct. 2007).
  3. G. Vienne, et al., “Liquid core fibers based on hollow core microstructured fibers”, Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on, 551–555, (Aug. 2005).
  4. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006). [CrossRef] [PubMed]
  5. C. J. S. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007). [CrossRef] [PubMed]
  6. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005). [CrossRef] [PubMed]
  7. M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006). [CrossRef]
  8. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres, (Imperial College Press, Coven Garden, London, 2005), Chap. 1.
  9. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  10. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005). [CrossRef]
  11. N. M. Litchinitser and E. Poliakov, “Anitiresonant guiding microstructured optical fibres for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005). [CrossRef]
  12. H. Leutz, “Scintillating Fibre,” Nucl. Instrum. Methods Phys. Res. A 364(3), 422–448 (1995). [CrossRef]
  13. T. O. White, “Scintillating Fibres,” Nucl. Instrum. Methods Phys. Res. A 273(2-3), 820–825 (1988). [CrossRef]
  14. G. F. Knoll, Radiation Detection and Measurement, (John Wiley & Sons, New York, 2000), Chap. 8,14.
  15. C. Zorn, “A pedestrians guide to radiation damage in plastic scintillators,” Radiat. Phys. Chem. 41(1-2), 37–43 (1993). [CrossRef]
  16. Saint Gobian Liquid Scintillator Products, http://www.detectors.saint-gobain.com/Liquid-Scintillator.aspx .
  17. CUDOS Multipole Analysis Software for Microstructured Fiber: http:// www.physics.usyd.edu.au/cudos/research/old%20site/pcf.html .
  18. FIMMWAVE from Photon Design: http:// www.photond.com .
  19. A. W. Snyder, and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, New York, 1983) Chap. 1–6.
  20. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  21. J. J. Fitzgerald, G. L. Brownell, and F. J. Mahoney, Mathematical Theory of Radiation Dosimetry, (Gordon and Breach Science, New York, 1967), Chap. 5.
  22. NIST x-ray absorption data for common materials: Plastic Scintillator (Vinyl toluene): http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/vinyl.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited