OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13782–13787

Real-time coherence holography

Dinesh N. Naik, Takahiro Ezawa, Yoko Miyamoto, and Mitsuo Takeda  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13782-13787 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coherence holography capable of real-time recording and reconstruction is proposed and experimentally demonstrated with a generic Leith-type coherence hologram. The coherence hologram is optically generated in real-time using a Mach-Zehnder interferometer and reconstructed using a Sagnac radial shearing interferometer. With this method one can create an optical field distribution with a desired spatial coherence function, and visualize the coherence function in real-time as the contrast and phase variations in an interference fringe pattern. The reconstructed image of the complex coherence function has been quantified with the Fourier transform method of fringe-pattern analysis.

© 2010 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques

ToC Category:

Original Manuscript: March 25, 2010
Revised Manuscript: May 19, 2010
Manuscript Accepted: June 4, 2010
Published: June 11, 2010

Dinesh N. Naik, Takahiro Ezawa, Yoko Miyamoto, and Mitsuo Takeda, "Real-time coherence holography," Opt. Express 18, 13782-13787 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13(23), 9629–9635 (2005). [CrossRef] [PubMed]
  2. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift,” Opt. Express 17(13), 10633–10641 (2009). [CrossRef] [PubMed]
  3. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “Phase-shift coherence holography,” Opt. Lett. 35(10), 1728–1730 (2010). [CrossRef] [PubMed]
  4. W. Wang, H. Kozaki, J. Rosen, and M. Takeda, “Synthesis of longitudinal coherence functions by spatial modulation of an extended light source: a new interpretation and experimental verifications,” Appl. Opt. 41(10), 1962–1971 (2002). [CrossRef] [PubMed]
  5. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39(23), 4107–4111 (2000). [CrossRef]
  6. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96(7), 073902 (2006). [CrossRef] [PubMed]
  7. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express 14(25), 12109–12121 (2006). [CrossRef] [PubMed]
  8. M. Gokhler, Z. Duan, J. Rosen, and M. Takeda, “Spatial coherence radar applied for tilted surface profilometry,” Opt. Eng. 42(3), 830–836 (2003). [CrossRef]
  9. E. Baleine and A. Dogariu, “Variable coherence tomography,” Opt. Lett. 29(11), 1233–1235 (2004). [CrossRef] [PubMed]
  10. V. Ryabukho, D. Lyakin, and M. Lobachev, “Influence of longitudinal spatial coherence on the signal of a scanning interferometer,” Opt. Lett. 29(7), 667–669 (2004). [CrossRef] [PubMed]
  11. V. Ryabukho, D. Lyakin, and M. Lobachev, “Longitudinal pure spatial coherence of a light field with wide frequency and angular spectra,” Opt. Lett. 30(3), 224–226 (2005). [CrossRef] [PubMed]
  12. P. Pavliček, M. Halouzka, Z. Duan, and M. Takeda, “Spatial coherence profilometry on tilted surfaces,” Appl. Opt. 48(34), H40–H47 (2009). [CrossRef] [PubMed]
  13. M. V. R. K. Murty, “A compact radial shearing interferometer based on the law of refraction,” Appl. Opt. 3(7), 853–857 (1964). [CrossRef]
  14. G. Cochran, “New method of making Fresnel transforms,” J. Opt. Soc. Am. 56(11), 1513–1517 (1966). [CrossRef]
  15. G. W. Stroke, D. Brumm, and A. Funkhouser, ““Three-Dimensional Holography with “Lensless” Fourier-Transform Holograms and Coarse P/N Polaroid Film,” J. Opt. Soc. Am. 55(10), 1327–1328 (1965). [CrossRef]
  16. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  17. M. Born, and E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970), Chap. 10.
  18. J. W. Goodman, Statistical Optics, 1st ed. (Wiley, New York, 1985), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited