OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13788–13804

Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals

Stavros G. Demos, Paul DeMange, Raluca A. Negres, and Michael D. Feit  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13788-13804 (2010)
http://dx.doi.org/10.1364/OE.18.013788


View Full Text Article

Enhanced HTML    Acrobat PDF (2098 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced damage at near operational laser excitation conditions can limit the performance of potassium dihydrogen phosphate (KH2PO4, or KDP) and its deuterated analog (DKDP) which are currently the only nonlinear optical materials suitable for use in large-aperture laser systems. This process has been attributed to pre-existing damage precursors that were incorporated or formed during growth that have not yet been identified. In this work, we present a novel experimental approach to probe the electronic structure of the damage precursors. The results are modeled assuming a multi-level electronic structure that includes a bottleneck for 532 nm excitation. This model reproduces our experimental observations as well as other well-documented behaviors of laser damage in KDP crystals. Comparison of the electronic structure of known defects in KDP with this model allows for identification of a specific class that we postulate may be the constituent defects in the damage precursors. The experimental results also provide evidence regarding the physical parameters affecting the ability of individual damage precursors to initiate damage, such as their size and defect density; these parameters were found to vary significantly between KDP materials that exhibit different damage performance characteristics.

© 2010 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 7, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 13, 2010
Published: June 11, 2010

Citation
Stavros G. Demos, Paul DeMange, Raluca A. Negres, and Michael D. Feit, "Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals," Opt. Express 18, 13788-13804 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004). [CrossRef]
  2. K. J. Kramer, J. F. Latkowski, R. P. Abbott, J. K. Boyd, J. J. Powers, and J. E. Seifried, “Neutron Transport And Nuclear Burnup Analysis For The Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine,” Fusion Sci. Technol. 56, 625–631 (2009).
  3. E. I. Moses, T. D. de la Rubia, E. Storm, J. F. Latkowski, J. C. Farmer, R. P. Abbott, K. J. Kramer, P. F. Peterson, H. F. Shaw, and R. F. Lehman, “A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy,” Fusion Sci. Technol. 56, 547–565 (2009).
  4. N. P. Zaitseva, J. J. DeYoreo, M. R. Dehaven, R. L. Vital, K. E. Montgomery, M. Richardson, and L. J. Atherton, “Rapid growth of large-scale (40-55 cm) KH2PO4 crystals,” J. Cryst. Growth 180(2), 255–262 (1997). [CrossRef]
  5. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002). [CrossRef]
  6. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004). [CrossRef] [PubMed]
  7. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals,” Appl. Phys. Lett. 89(13), 131901 (2006). [CrossRef]
  8. A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt. 42(27), 5483–5495 (2003). [CrossRef] [PubMed]
  9. P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45(10), 104205 (2006). [CrossRef]
  10. P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, “Laser-induced defect reactions governing damage initiation in DKDP crystals,” Opt. Express 14(12), 5313–5328 (2006). [CrossRef] [PubMed]
  11. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Laser annealing characteristics of multiple bulk defect populations within DKDP crystals,” J. Appl. Phys. 104(10), 103103 (2008). [CrossRef]
  12. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning,” Proc. SPIE 5273, 74–81 (2004). [CrossRef]
  13. H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, and K. Yoshida, “Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, and wavelength,” Appl. Phys. B 70(2), 195–201 (2000). [CrossRef]
  14. S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, “Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation,” Opt. Express 17(24), 21652–21665 (2009). [CrossRef] [PubMed]
  15. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003). [CrossRef] [PubMed]
  16. S. G. Demos, M. Yan, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Raman Scattering Investigation of KDP Subsequent to High Fluence Laser Irradiation,” Appl. Phys. Lett. 72(19), 2367–2369 (1998). [CrossRef]
  17. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “Understanding and predicting the damage performance of KDxH2-xPO4 crystals under simultaneous exposure to 532- and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922 (2006). [CrossRef]
  18. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in DKDP nonlinear crystals,” J. Appl. Phys. 103(8), 083122 (2008). [CrossRef]
  19. P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75(10), 3298–3301 (2004). [CrossRef]
  20. R. W. Hopper and D. Uhlmann, “Mechanism of inclusion damage in laser glass,” Appl. Phys. (Berl.) 41, 4023–4025 (1970). [CrossRef]
  21. S. I. Anisimov, and V. A. Khokhlov, Instabilities in laser-matter interaction (CRC Press, Boca Raton, FL, 1995).
  22. S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005). [CrossRef]
  23. F. Bonneau, P. Combis, J. L. Rullier, M. Commandre, A. During, J. Y. Natoli, M. J. Pellin, M. R. Savina, E. Cottancin, and M. Pellarin, “Observation by photothermal microscopy of increased silica absorption in laser damage induced by gold nanoparticles,” Appl. Phys. Lett. 83(19), 3855–3857 (2003). [CrossRef]
  24. M. D. Feit, A. M. Rubenchik, and M. Runkel, “Analysis of Bulk DKDP Damage Distribution, Obscuration and Pulselength Dependence,” Proc. SPIE 4347, 383–388 (2001). [CrossRef]
  25. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Annalen der Physik 330(3), 377–445 (1908). [CrossRef]
  26. P. Audebert, P. Daguzan, A. Dos Santos, J. Gauthier, J. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2.,” Phys. Rev. Lett. 73(14), 1990–1993 (1994). [CrossRef] [PubMed]
  27. D. A. Young and E. M. Corey, “A new global equation of state model for hot, dense matter,” J. Appl. Phys. 78(6), 3748 (1995). [CrossRef]
  28. A. Dyan, F. Enguehard, S. Lallich, H. Piombini, and G. Duchateau, “Scaling laws in laser-induced potassium dihydrogen phosphate crystal damage by nanosecond pulses at 3ω,” J. Opt. Soc. Am. B 25(6), 1087–1095 (2008). [CrossRef]
  29. M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910W (2005). [CrossRef]
  30. J. J. Adams, T. L. Weiland, J. R. Stanley, W. D. Sell, R. L. Luthi, J. L. Vickers, C. W. Carr, M. D. Feit, A. M. Rubenchik, M. L. Spaeth, and R. P. Hackel, “Pulse length dependence of laser conditioning and bulk damage in KH2PO4,” Proc. SPIE 5647, 265–278 (2005). [CrossRef]
  31. S. Reyné, G. Duchateau, J.-Y. Natoli, and L. Lamaignere, “Pump-pump experiment in KH2PO4 crystals: Coupling two different wavelengths to identify the laser-induced damage mechanisms in the nanosecond regime,” Appl. Phys. Lett. 96(12), 121102 (2010). [CrossRef]
  32. M. L. Spaeth, K. Manes, Z. M. Liao, J. J. Adams, C. W. Carr, ”Predicting laser-induced bulk damage for deuterated potassium dihydrogen phosphate crystals using ADM (absorption distribution model),” submitted for publication.
  33. M. M. Chirila, N. Y. Garces, L. E. Halliburton, S. G. Demos, T. A. Land, and H. B. Radousky, “Production and thermal decay of radiation-induced point defects in KDP crystals,” J. Appl. Phys. 94(10), 6456–6462 (2003). [CrossRef]
  34. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Ab initio electronic structure calculations of hydrogen point defects in KH2PO4,” Phys. Rev. B 68(22), 224107 (2003). [CrossRef]
  35. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP,” Phys. Rev. Lett. 91(1), 015505 (2003). [CrossRef] [PubMed]
  36. C. Liu, C. Hou, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B 72(13), 134110 (2005). [CrossRef]
  37. K. Wang, C. Fang, J. Zhang, C. S. Liu, R. I. Boughton, S. Wang, and X. Zhao, “First-principles study of interstitial oxygen in potassium dihydrogen phosphate crystals,” Phys. Rev. B 72(18), 184105 (2005). [CrossRef]
  38. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009). [CrossRef] [PubMed]
  39. S. I. Kudryashov and V. I. Emelyanov, “Band Gap Collapse and Ultrafast Cold Melting of Silicon during Femtosecond Laser Pulse,” JETP Lett. 73(5), 228–231 (2001). [CrossRef]
  40. Z. L. Xia, D. G. Deng, Z. X. Fan, and J. D. Shao, “Development in laser induced extrinsic absorption damage mechanism of dielectric films,” Chin. Phys. Lett. 23(8), 2179–2182 (2006). [CrossRef]
  41. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449(7158), 72–74 (2007). [CrossRef] [PubMed]
  42. J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007). [CrossRef]
  43. S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, “Imaging of laser-induced reactions of individual defect nanoclusters,” Opt. Lett. 26(24), 1975–1977 (2001). [CrossRef]
  44. S. G. Demos, M. Staggs, and H. B. Radousky, “Investigation of bulk defect formations in KH2PO4 crystals using fluorescence microscopy,” Phys. Rev. B 67(22), 224102 (2003). [CrossRef]
  45. J. Swain, S. Stokowski, D. Milam, and F. Rainer, “Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation,” Appl. Phys. Lett. 40(4), 350–352 (1982). [CrossRef]
  46. J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J. L. Vickers, T. L. Weiland, and D. A. Willard, “Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4,” Proc. SPIE 5991, 59911R (2005). [CrossRef]
  47. J. H. Campbell, E.P. Wallerstein, J.S. Hayden, D.L. Sapak, D.E. Warrington, A.J. Marker, H. Toratani, H. Meissner, S. Nakajima and T. Izumitani, Lawrence Livermore National Laboratory report UCRL-53932, (May 26, 1989).
  48. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009). [CrossRef] [PubMed]
  49. R. A. Negres, N. P. Zaitseva, P. DeMange, and S. G. Demos, “Expedited laser damage profiling of KDxH(2-x)PO4 with respect to crystal growth parameters,” Opt. Lett. 31(21), 3110–3112 (2006). [CrossRef] [PubMed]
  50. L. Liang, Z. Xian, S. Xun, and S. Xueqin, “Sulfate may play an important role in the wavelength dependence of laser induced damage,” Opt. Express 14(25), 12196–12198 (2006). [CrossRef] [PubMed]
  51. R. A. Negres, C. K. Saw, P. Demange, and S. G. Demos, “Laser damage performance of KD2-xHxPO4 crystals following X-ray irradiation,” Opt. Express 16(21), 16326–16333 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited