OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13886–13907

Optical properties of metal-dielectric-metal microcavities in the THz frequency range

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13886-13907 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of the optical properties of metal-dielectric-metal structures with patterned top metallic surfaces, in the THz frequency range. When the thickness of the dielectric slab is very small with respect to the wavelength, these structures are able to support strongly localized electromagnetic modes, concentrated in the subwavelength metal-metal regions. We provide a detailed analysis of the physical mechanisms which give rise to these photonic modes. Furthermore, our model quantitatively predicts the resonance positions and their coupling to free space photons. We demonstrate that these structures provide an efficient and controllable way to convert the energy of far field propagating waves into near field energy.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.5990) Integrated optics : Semiconductors
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics
(260.3090) Physical optics : Infrared, far
(260.3910) Physical optics : Metal optics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: April 15, 2010
Revised Manuscript: May 18, 2010
Manuscript Accepted: May 18, 2010
Published: June 14, 2010

Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, "Optical properties of metal-dielectric-metal microcavities in the THz frequency range," Opt. Express 18, 13886-13907 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006). [CrossRef]
  2. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  5. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ ≈ 8–11.5 µm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366–1368 (1998). [CrossRef]
  6. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  7. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  8. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  10. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  11. M. J. Adams, An Introduction to Optical Waveguides, (John Wiley & Sons, Chichester, 1981).
  12. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]
  13. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010). [CrossRef]
  14. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457(7226), 174–178 (2009). [CrossRef] [PubMed]
  15. Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17(12), 9491–9502 (2009). [CrossRef] [PubMed]
  16. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R Brown, “Squeezing Millimeter Waves into Microns,” Phys. Rev. Lett. 92, 143904 (2004). [CrossRef] [PubMed]
  17. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009). [CrossRef]
  18. Y. Todorov and C. Minot, “Modal method for conical diffraction on a rectangular slit metallic grating in a multilayer structure,” J. Opt. Soc. Am. A 24(10), 3100–3114 (2007). [CrossRef]
  19. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “Highly conducting lamellar diffraction grating,” Opt. Acta (Lond.) 28, 1103–1106 (1981). [CrossRef]
  20. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982). [CrossRef]
  21. L. Landau, and E. Lifchitz, Electrodynamics of Continuous Media (Mir, Moscow, 1969).
  22. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000). [CrossRef] [PubMed]
  23. A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006). [CrossRef]
  24. C. Kittel, Introduction to solid state physics (John Wiley & Sons, 1976).
  25. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009). [CrossRef] [PubMed]
  26. E. Palik ed., Handbook of Optical Constants of Solids, (Academic Press, San Diego, 1998).
  27. R. Petit ed., Electromagnetic theory of gratings, (Springer-Verlag, Berlin, 1980).
  28. C. Balanis, Antenna Theory (John Wiley & Sons, 2005).
  29. N. H. Fletcher, and T. D. Rossing, The Physics of Musical Instruments, (Springer-Verlag, New York, 1998).
  30. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). [CrossRef]
  31. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  32. As the thickness L is increased beyond 1µm the higher order guided modes should be taken into account in order to obtain quantitative results. Nevertheless, the qualitative behaviour described in the text remains the same.
  33. The Hankel function has a non-integrable singularity at x = 0, however this singularity can be rendered integrabale by inclusion of the metallic loss, which creates a non-zero imaginary part in the frequency k0.
  34. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, “Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap,” Opt. Express 15(10), 5948–5965 (2007). [CrossRef] [PubMed]
  35. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935). [CrossRef]
  36. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001). [CrossRef]
  37. L. A. Coldren, and S. W. Corzine, Diode lasers and Photonic Integrated Circuits, (John Wiley & Sons, New York, 1995).
  38. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]
  39. C. Cohen-Tnaoudji, B. Diu, and F. Laloë, Quantum Mechanics, (Hermann, Paris, 1977) Vol. I .
  40. F. de Fornel, Les ondes évanescentes en Optique et en Optoélectronique, (Eyrolles, Paris 1997).
  41. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited