OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13908–13914

PMD tolerance of 288 Gbit/s Coherent WDM and transmission over unrepeatered 124 km of field-installed single mode optical fiber

Paola Frascella, Fatima C. Garcia Gunning, Selwan K. Ibrahim, Paul Gunning, and Andrew D. Ellis  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13908-13914 (2010)
http://dx.doi.org/10.1364/OE.18.013908


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 19, 2010
Revised Manuscript: June 7, 2010
Manuscript Accepted: June 7, 2010
Published: June 14, 2010

Citation
Paola Frascella, Fatima C. Garcia Gunning, Selwan K. Ibrahim, Paul Gunning, and Andrew D. Ellis, "PMD tolerance of 288 Gbit/s Coherent WDM and transmission over unrepeatered 124 km of field-installed single mode optical fiber," Opt. Express 18, 13908-13914 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Mosier and R. G. Clabaugh, “Kineplex, A Bandwidth-Efficient Binary Transmission System,” AIEE Transactions 76, 723–728 (1958).
  2. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587 (2006). [CrossRef]
  3. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  4. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1bit/s/Hz”, Optical Fiber Communication Conference (2002), ThD1.
  5. K. Takiguchi, M. Oguma, T. Shibata, and H. Takahashi, “Optical OFDM demultiplexer using silica PLC based optical FFT circuit”, Optical Fiber Communication Conference (2009), OWO3.
  6. S. K. Ibrahim, A. D. Ellis, F. C. G. Gunning, and F. H. Peters, “Demonstration of CoWDM using a DPSK modulator array with injection-locked lasers,” Electron. Lett. 46(2), 150–152 (2010). [CrossRef]
  7. B. Cuenot, and F. C. G. Gunning, M. McCarthy, T. Healy, A.D. Ellis, “0.6Tbit/s capacity and 2bit/s/Hz spectral efficiency at 42.6 Gsymbol/s using a single DFB laser with NRZ coherent WDM and polarization multiplexing”, Proc. CLEO-Europe (2007), CI8–5-FRI.
  8. A.D. Ellis, I. Tomkos, A.K. Mishra, J. Zhao, S.K. Ibrahim, P. Frascella, F.C.G. Gunning, “Adaptive Modulation Schemes”, Digest of LEOS Summer Topical Meetings (2009), TuD3.2.
  9. A. J. Lowery, S. Wang, and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Opt. Express 15(20), 13282–13287 (2007). [CrossRef] [PubMed]
  10. T. Healy, A. D. Ellis, F. C. G. Gunning, B. Cuenot, and M. Rukosueva, “1 b/s/Hz Coherent WDM Transmission over 112 km of Dispersion Managed Optical Fiber”, Optical Fiber Communication Conference (2006), JThB10.
  11. B. J. C. Schmidt, A. J. Lowery, and J. Amstrong, “Impact of PMD in Single-Receiver and Polarization-Diverse Direct-Detection Optical OFDM,” J. Lightwave Technol. 27(14), 2792–2799 (2009). [CrossRef]
  12. W.-R. Peng, K.-M. Feng, and S. Chi, “Joint CD and PMD Compensation for Direct-Detected Optical OFDM Using Polarization-Time Coding Approach”, European Conference on Optical Communications (2009), Paper 2.3.2.
  13. K. Schuh, E. Lach, B. Junginger, G. Veith, J. Renaudier, G. Charlet, and P. Tran, “8Tb/s (80x 107Gb/s) DWDM NRZ-VSB Transmission over 510km NZDSF with 1bit/s/Hz Spectral Efficiency,” Bell Labs Tech. J. 14(1), 89–104 (2009). [CrossRef]
  14. F. C. G. Gunning, T. Healy, and A. D. Ellis, “Dispersion tolerance of Coherent WDM,” IEEE Photon. Technol. Lett. 18(12), 1338–1340 (2006). [CrossRef]
  15. C. Xie, L. Moller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003). [CrossRef]
  16. M. Mayrock, and H. Haunstein, “PMD Tolerant Direct-Detection Optical OFDM System”, European Conference on Optical Communications (2007), Paper 5.2.5.
  17. P. Frascella, S. K. Ibrahim, F. C. G. Gunning, P. Gunning, and A. D. Ellis, “Transmission of a 288Gbit/s Ethernet Superchannel over 124km un-repeatered field-installed SMF”, Optical Fiber Communication Conference (2010), OThD2.
  18. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited