OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14031–14040

Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers

J. K. Lyngsø, B. J. Mangan, C. B. Olausson, and P. J. Roberts  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14031-14040 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1664 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on two types of polarization maintaining solid photonic crystal fibers that guide light by a combination of a photonic bandgap and total internal reflection. Group and phase birefringence are studied experimentally and numerically for stress-applying parts made from B-doped and F-doped silica. The stress field originating from Ge-doped cladding rods is shown to interfere with the stress field from the B-doped and F-doped rods. Since the differential expansion coefficients of B-doped and F-doped silica have opposite signs this interference is either destructive or constructive. Consequently, we found that the fiber with F-doped stress applying parts has the highest modal phase birefringence, and polarization cross talk is characterized by an h-parameter below 3⋅10−5 m−1.

© 2010 OSA

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 12, 2010
Revised Manuscript: June 2, 2010
Manuscript Accepted: June 14, 2010
Published: June 15, 2010

J. K. Lyngsø, B. J. Mangan, C. B. Olausson, and P. J. Roberts, "Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers," Opt. Express 18, 14031-14040 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14(10), 4368–4373 (2006). [CrossRef] [PubMed]
  2. S. Ramachandran, “Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005). [CrossRef]
  3. S. Ramachandran, S. Ghalmi, J. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Demonstration of Anomalous Dispersion in a Solid, Silica-Based Fiber at λ < 1300 nm,” In Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) p. PDP3 (Optical Society of America, 2006).
  4. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009). [CrossRef] [PubMed]
  5. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006). [CrossRef] [PubMed]
  6. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008). [CrossRef]
  7. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005). [CrossRef] [PubMed]
  8. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983). [CrossRef] [PubMed]
  9. K. Takada, J. Noda, and R. Ulrich, “Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force,” Appl. Opt. 24(24), 4387–4397 (1985). [CrossRef] [PubMed]
  10. N. Shibata, M. Tsubokawa, M. Ohashi, K.- Kitayama, and S. Seikai, “Birefringence and polarization mode dispersion in a coil of a single-mode fiber,” J. Opt. Soc. Am. A 3(11), 1935–1940 (1986). [CrossRef]
  11. P. McIsaac, “Symmetry-Induced Modal Characteristics of Uniform Waveguides — I: Summary of Results,” IEEE T. Microw. Theory 23(5), 421–429 (1975). [CrossRef]
  12. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006). [CrossRef] [PubMed]
  13. G. W. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38–39, 201–204 (1980). [CrossRef]
  14. P. K. Bachmann, W. G. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: Preforms,” Appl. Opt. 25(7), 1093–1098 (1986). [CrossRef] [PubMed]
  15. R. Stolen, “Calculation of stress birefringence in fibers by an infinitesimal element method,” J. Lightwave Technol. 1(2), 297–301 (1983). [CrossRef]
  16. P. Chu and R. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984). [CrossRef]
  17. K. Tsai, K. Kim, and T. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991). [CrossRef]
  18. Y. Huang, A. Sarkar, and P. Schultz, “Relationship between composition, density and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27(1), 29–37 (1978). [CrossRef]
  19. S. Takahashi and S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30(3), 359–370 (1979). [CrossRef]
  20. J. Sakai and T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. 18(11), 1899–1909 (1982). [CrossRef]
  21. R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11(3), 240–254 (2005). [CrossRef]
  22. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26(7), 1175–1182 (1987). [CrossRef] [PubMed]
  23. P. K. Bachmann, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988). [CrossRef]
  24. M. Kyoto, Y. Ohoga, S. Ishikawa, and Y. Ishiguro, “Characterization of fluorine-doped silica glasses,” J. Mater. Sci. 28(10), 2738–2744 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited