OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14114–14122

Single-shot picosecond interferometry with one-nanometer resolution for dynamical surface morphology using a soft X-ray laser

Tohru Suemoto, Kota Terakawa, Yoshihiro Ochi, Takuro Tomita, Minoru Yamamoto, Noboru Hasegawa, Manato Deki, Yasuo Minami, and Tetsuya Kawachi  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14114-14122 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using highly coherent radiation at a wavelength of 13.9 nm from a Ag-plasma soft X-ray laser, we constructed a pump-and-probe interferometer based on a double Lloyd's mirror system. The spatial resolutions are evaluated with a test pattern, showing 1.8-μm lateral resolution, and 1-nm depth sensitivity. This instrument enables a single-shot observation of the surface morphology with a 7-ps time-resolution. We succeeded in observing a nanometer scale surface dilation of Pt films at the early stage of the ablation process initiated by a 70 fs near infrared pump pulse.

© 2010 OSA

OCIS Codes
(320.5390) Ultrafast optics : Picosecond phenomena
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 13, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 12, 2010
Published: June 16, 2010

Tohru Suemoto, Kota Terakawa, Yoshihiro Ochi, Takuro Tomita, Minoru Yamamoto, Noboru Hasegawa, Manato Deki, Yasuo Minami, and Tetsuya Kawachi, "Single-shot picosecond interferometry with one-nanometer resolution for dynamical surface morphology using a soft X-ray laser," Opt. Express 18, 14114-14122 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002). [CrossRef]
  2. J. Reif, F. Costache, and M. Bestehorn, in “Recent Advances in Laser Processing of Materials,” (ed. J. Perriere, E. Millon, and E. Fogarassy, Chap 9, pp. 275–290 (Elsevier, Oxford U.K., 2006).
  3. K. Nasu, H. Ping, and H. Mizouchi, “Photoinduced structural phase transitions and their dynamics,” J. Phys. Condens. Matter 13(35), 201 (2001). [CrossRef]
  4. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001). [CrossRef] [PubMed]
  5. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422(6929), 287–289 (2003). [CrossRef] [PubMed]
  6. P. Baum, D.-S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788–792 (2007). [CrossRef] [PubMed]
  7. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Femtosecond time-resolved interferometric microscopy,” Appl. Phys., A Mater. Sci. Process. 78(4), 483–489 (2004). [CrossRef]
  8. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005). [CrossRef] [PubMed]
  9. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009). [CrossRef] [PubMed]
  10. A. Barty, S. Boutet, M. J. Bogan, S. Hau-Riege, S. Marchesini, K. Sokolowski-Tinten, N. Stojanovic, R. Tobey, H. Ehrke, A. Cavalleri, S. Düsterer, M. Frank, S. Bajt, B. W. Woods, M. M. Seibert, J. Hajdu, R. Treusch, and H. N. Chapman, “Ultrafast single-shot diffraction imaging of nanoscale dynamics,” Nat. Photonics 2(7), 415–419 (2008). [CrossRef]
  11. Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. Luther, M. Berrill, and J. J. Rocca, “Phase-coherent, injection-seeded table-top soft-X-ray lasers at 18.9 nm and 13.9 nm,” Nat. Photonics 2(2), 94–98 (2008). [CrossRef]
  12. M. Tanaka, M. Nishikino, T. Kawachi, N. Hasegawa, M. Kado, M. Kishimoto, K. Nagashima, and Y. Kato, “X-ray laser beam with diffraction-limited divergence generated with two gain media,” Opt. Lett. 28(18), 1680–1682 (2003). [CrossRef] [PubMed]
  13. M. Nishikino, N. Hasegawa, T. Kawachi, H. Yamatani, K. Sukegawa, and K. Nagashima, “Characterization of a high-brilliance soft x-ray laser at 13.9 nm by use of an oscillator-amplifier configuration,” Appl. Opt. 47(8), 1129–1134 (2008). [CrossRef] [PubMed]
  14. J. J. Rocca, C. H. Moreno, M. C. Marconi, and K. Kanizay, “Soft-x-ray laser interferometry of a plasma with a tabletop laser and a Lloyd’s mirror,” Opt. Lett. 24(6), 420–422 (1999). [CrossRef]
  15. J. Filevich, J. J. Rocca, M. C. Marconi, S. J. Moon, J. Nilsen, J. H. Scofield, J. Dunn, R. F. Smith, R. Keenan, J. R. Hunter, and V. N. Shlyaptsev, “Observation of a multiply ionized plasma with index of refraction greater than one,” Phys. Rev. Lett. 94(3), 035005 (2005). [CrossRef] [PubMed]
  16. G. Jamelot, D. Ros, B. Rus, M. Kozlova, K. Cassou, S. Kazamias, A. Klisnick, T. Mocek, P. Homer, J. Polan, and M. Stupka, “X-ray laser interference microscopy for advanced studies of laser-induced damages,” Proc. X-ray Lasers 2006 (ed. Nickles, P. V., and Janulewicz, K. A.), 571–576 (Springer, Netherlands, 2007).
  17. Y. Ochi, T. Kawachi, N. Hasegawa, M. Nishikino, T. Ohba, M. Tanaka, M. Kishimoto, T. Kaihori, K. Nagashima, and A. Sugiyama, “Demonstration of submicro Joule, spatially coherent soft-X-ray laser pumped by 0.1 Hertz, 10 Joule, picosecond laser,” Jpn. J. Appl. Phys. 48(12), 120212 (2009). [CrossRef]
  18. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  19. J. T. Larsen and S. M. Lane, “HYADES - A plasma hydrodynamic code for dense plasma studies,” J. Quant. Spectrosc. Radiat. Transf. 51(1-2), 179–186 (1994). [CrossRef]
  20. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155(1-4), 1–10 (2000). [CrossRef]
  21. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998). [CrossRef]
  22. Y. Izawa, Y. Setuhara, M. Hashida, M. Fujita, and Y. Izawa, “Ablation and amorphization of crystalline Si by femtosecond and picosecond laser irradiation,” Jpn. J. Appl. Phys. 45(7), 5791–5794 (2006). [CrossRef]
  23. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction,” Nature 398(6725), 310–312 (1999). [CrossRef]
  24. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23(9), 1954–1964 (2006). [CrossRef]
  25. B. Rethfeld and K. Sokolowski-Tinten, “von D. der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79, 767–769 (2004).
  26. P. Stampfli and K. Bennemann, “Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions,” Phys. Rev. B 49(11), 7299–7305 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited