OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14152–14158

Field penetrations in photonic crystal Fano reflectors

Deyin Zhao, Zhenqiang Ma, and Weidong Zhou  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14152-14158 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report here the field and modal characteristics in photonic crystal (PC) Fano reflectors. Due to the tight field confinement and the compact reflector size, the cavity modes are highly localized and confined inside the single layer Fano reflectors, with the energy penetration depth of only 100nm for a 340 nm thick Fano reflector with a design wavelength of 1550 nm. On the other hand, the phase penetration depths, associated with the phase discontinuity and dispersion properties of the reflectors, vary from 2000 nm to 4000 nm, over the spectral range of 1500 nm to 1580 nm. This unique feature offers us another design freedom of the dispersion engineering for the cavity resonant mode tuning. Additionally, the field distributions are also investigated and compared for the Fabry-Perot cavities formed with PC Fano reflectors, as well conventional DBR reflectors and 1D sub-wavelength grating reflectors. All these characteristics associated with the PC Fano reflectors enable a new type of resonant cavity design for a large range of photonic applications.

© 2010 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(230.0230) Optical devices : Optical devices
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Photonic Crystals

Original Manuscript: May 6, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 12, 2010
Published: June 16, 2010

Deyin Zhao, Zhenqiang Ma, and Weidong Zhou, "Field penetrations in photonic crystal Fano reflectors," Opt. Express 18, 14152-14158 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007). [CrossRef] [PubMed]
  2. M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008). [CrossRef]
  3. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009). [CrossRef] [PubMed]
  4. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007). [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  6. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  7. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992). [CrossRef]
  8. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  9. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41(7), 1241–1245 (2002). [CrossRef] [PubMed]
  10. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003). [CrossRef] [PubMed]
  11. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004). [CrossRef]
  12. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004). [CrossRef]
  13. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006). [CrossRef]
  14. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  15. M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007). [CrossRef]
  16. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  17. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009). [CrossRef]
  18. L. Coldren, and S. Corzine, Diode lasers and photonic integrated circuits, (Wiley New York, 1995).
  19. J. H. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007). [CrossRef] [PubMed]
  20. D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992). [CrossRef]
  21. C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009). [CrossRef]
  22. M. Born, E. Wolf, and A. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Cambridge Univ Pr, 1999.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited