OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14270–14279

Slow-light enhanced absorption in a hollow-core fiber

Jure Grgić, Sanshui Xiao, Jesper Mørk, Antti-Pekka Jauho, and N. Asger Mortensen  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14270-14279 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate the fibre. However, in contrast to structures with a refractive index that varies along the propagation direction, like Bragg stacks, the translationally invariant structures studied here feature an intrinsic trade-off between light slow-down and filling fraction that limits the net absorption enhancement. We quantify the degree of absorption enhancement that can be achieved and its dependence on key material parameters. By treating the absorption and index on equal footing, we demonstrate the existence of an absorption-induced saturation of the group index that itself limits the maximum absorption enhancement that can be achieved.

© 2010 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(160.5298) Materials : Photonic crystals

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 30, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 16, 2010
Published: June 18, 2010

Jure Grgić, Sanshui Xiao, Jesper Mørk, Antti-Pekka Jauho, and N. Asger Mortensen, "Slow-light enhanced absorption in a hollow-core fiber," Opt. Express 18, 14270-14279 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  3. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 167–176 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-4-5-167. [CrossRef] [PubMed]
  4. D. B. Li, and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80, 153304 (2009). [CrossRef]
  5. A. V. Maslov, and C. Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic band structure,” IEEE J. Quantum Electron. 40, 1389–1397 (2004). [CrossRef]
  6. R. W. Boyd, and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]
  7. J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009). [CrossRef]
  8. K. H. Jensen, M. N. Alam, B. Scherer, A. Lambrecht, and N. A. Mortensen, “Slow-light enhanced light-matter interactions with applications to gas sensing,” Opt. Commun. 281, 5335–5339 (2008). [CrossRef]
  9. N. A. Mortensen, and S. Xiao, “Slow-light enhancement of Beer–Lambert–Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007). [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), 2nd ed.
  11. J. Mørk, and T. R. Nielsen, “On the enhancement of absorption, phase sensitivity and light-speed control using photonic crystals,” unpublished.
  12. S. G. Johnson, and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173. [CrossRef] [PubMed]
  13. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003). [CrossRef] [PubMed]
  14. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  15. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations Of Photonic Crystal Fibres (Imperial College Press, 2005). [CrossRef]
  16. C. Jiang, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Zero-group-velocity modes in longitudinally uniform waveguides,” Appl. Phys. Lett. 93, 241111 (2008). [CrossRef]
  17. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group–velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10082. [CrossRef] [PubMed]
  18. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated Optical Absorption by Slow Molecules in Hollow-Core Photonic Band-Gap Fibers,” Phys. Rev. Lett. 98, 213902 (2007). [CrossRef] [PubMed]
  19. J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10475. [CrossRef] [PubMed]
  20. J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008). [CrossRef]
  21. J. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group-index limitations in slow-light photonic crystals,” Photon. Nanostructures 8, 56–61 (2010). [CrossRef]
  22. J. Pedersen, S. Xiao, and N. A. Mortensen, “Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials,” J. Eur. Opt. Soc. Rapid Publ. 3, 08007 (2008). [CrossRef]
  23. N. A. Mortensen, and M. D. Nielsen, “Modeling of realistic cladding structures for air-core photonic bandgap fibers,” Opt. Lett. 29, 349–351 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited