OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14280–14292

A standing-wave interpretation of plasmon resonance excitation in split-ring resonators

Wen-Yu Chen and Chun-Hung Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14280-14292 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we investigated the plasmon resonances of split-ring resonators (SRRs) numerically at incident angles of 0 and 45° under illumination with linearly and circularly polarized waves. At 45° incidence, perpendicular polarized waves excited distinct odd plasmon modes; the difference in the reflections of right and left circularly polarized incident radiation was very large. From simulated near field plots, we found that the parallelism of the incident electric field and the induced plasmon current was the key factor affecting excitation. We propose the use of a parallelism factor (P-factor), based on a standing-wave approach, to characterize the ability of incident fields to excite multiple plasmon resonance currents. The mechanism of the field and current parallelism can explain the resonance behavior of SRRs when considering the polarization state, incident angle, and geometry of the SRR.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 4, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 13, 2010
Published: June 18, 2010

Wen-Yu Chen and Chun-Hung Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Opt. Express 18, 14280-14292 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  3. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  4. B. Kanté, A. de Lustrac, J. M. Lourtioz, and S. N. Burokur, “Infrared cloaking based on the electric response of split ring resonators,” Opt. Express 16(12), 9191–9198 (2008). [CrossRef] [PubMed]
  5. M. Farhat, S. Guenneau, S. Enoch, and A. B. Movchan, “Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4 Pt 2), 046309 (2009). [CrossRef] [PubMed]
  6. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18(9), 9561–9569 (2010). [CrossRef] [PubMed]
  7. A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Nanophotonic split-ring resonators as dichroics for molecular spectroscopy,” Appl. Phys. Lett. 93(2), 023121 (2008). [CrossRef]
  8. S. A. Maier, “Localized surface plasmons,” in Plasmonics: fundamentals and applications (Springer, 2007), pp. 65–88.
  9. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004). [CrossRef]
  10. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  11. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007). [CrossRef]
  12. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]
  13. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003). [CrossRef]
  14. G. Laurent, N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B 71(4), 045430 (2005). [CrossRef]
  15. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006). [CrossRef]
  16. C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008). [CrossRef]
  17. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007). [CrossRef]
  18. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  19. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A, Pure Appl. Opt. 11(7), 074009 (2009). [CrossRef]
  20. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009). [CrossRef] [PubMed]
  21. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005). [CrossRef] [PubMed]
  22. B. F. Bai, K. Konishi, X. F. Meng, P. Karvinen, A. Lehmuskero, M. Kuwata-Gonokami, Y. Svirko, and J. Turunen, “Mechanism of the large polarization rotation effect in the all-dielectric artificially chiral nanogratings,” Opt. Express 17(2), 688–696 (2009). [CrossRef] [PubMed]
  23. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007). [CrossRef] [PubMed]
  24. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007). [CrossRef]
  25. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  26. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997). [CrossRef]
  27. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh, and W. H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006). [CrossRef]
  28. D. W. Lynch, and W. R. Hunter, “Gold (Au),” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic Press, Inc., 1985), pp. 286–287.
  29. E. Hecht, Optics, 4 ed. (Person Education, Inc., 2002), pp. 333–334.
  30. D. J. Griffiths, Introduction to electrodynamics, 3 ed. (Prentice-Hall International, Inc., 1999), pp. 65–77.
  31. U. S. Inan, and A. S. Inan, Electromagnetic Waves (Prentice-Hall, Inc., 2000).
  32. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84(1-2), 219–227 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited