OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14454–14466

Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tünnermann, F. Lederer, and T. Pertsch  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14454-14466 (2010)
http://dx.doi.org/10.1364/OE.18.014454


View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a technique to decompose the scattered near field of two-dimensional arbitrary metaatoms into its multipole contributions. To this end we expand the scattered field upon plane wave illumination into cylindrical harmonics as known from Mie’s theory. By relating these cylindrical harmonics to the field radiated by Cartesian multipoles, the contribution of the lowest order electric and magnetic multipoles can be identified. Revealing these multipoles is essential for the design of metamaterials because they largely determine the character of light propagation. In particular, having this information at hand it is straightforward to distinguish between effects that result either from the arrangement of the metaatoms or from their particular design.

© 2010 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 9, 2010
Manuscript Accepted: May 24, 2010
Published: June 22, 2010

Citation
J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, "Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition," Opt. Express 18, 14454-14466 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351-1352 (2004). [CrossRef] [PubMed]
  2. N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009). [CrossRef]
  3. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478-3480 (2009). [CrossRef] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-380 (2008). [CrossRef] [PubMed]
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mat. 7, 31-37 (2008). [CrossRef]
  6. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101(R) (2008). [CrossRef]
  7. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78, 043811 (2008). [CrossRef]
  8. K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-Dielectric Rod-Type Metamaterials at Optical Frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [CrossRef] [PubMed]
  9. M. Burresi, D. V. Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550-553 (2009). [CrossRef] [PubMed]
  10. M. Decker, S. Burger, S. Linden, andM.Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80, 193102 (2009). [CrossRef]
  11. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102(R) (2009). [CrossRef]
  12. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photon. 3, 157-162 (2009). [CrossRef]
  13. J. Petschulat, A. Chipouline, A. T¨unnermann, T. Pertsch, C. Menzel, C. Rockstuhl, and F. Lederer, “Multipole nonlinearity of metamaterials,” Phys. Rev. A 80, 063828 (2009). [CrossRef]
  14. Y. Zeng, C. Dineen, and J. V. Moloney, “Magnetic dipole moments in single and coupled split-ring resonators,” Phys. Rev. B 81, 075116 (2010). [CrossRef]
  15. A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, Electromagnetics of bi-anisotropic materials: Theory and applications (Gordon and Breach, Amsterdam, 2001).
  16. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. T¨unnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009). [CrossRef]
  17. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 25, 377-445 (1908). [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  19. R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, Oxford, 2005).
  20. N. Liu, L. Langguth, T. Weiss, J. K¨astel, M. Fleischhauer, T. Pfau and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mat. 8, 758-762 (2009). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. . We applied the commercial product COMSOL. (www.comsol.com)
  23. M. Husnik, M. W. Klein, N. Feth, M. Konig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nature Photon. 2, 614-617 (2008). [CrossRef]
  24. M. Celebrano, M. Savoini, P. Biagioni, M. Zavelani-Rossi, P.-M. Adam, L. Duo, G. Cerullo, and M. Finazzi, “Retrieving the complex polarizability of single plasmonic nanoresonators,” Phys. Rev. B 80,153407 (2009). [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909-3915 (1998). [CrossRef]
  27. I. S. Gradstein and I. M. Ryshik, Tables of Series, Products and Integrals (Harry Deutsch, Frankfurt, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited