OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14568–14576

Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces

Svetlana V. Boriskina, Sylvanus Y. K. Lee, Jason J. Amsden, Fiorenzo G. Omenetto, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14568-14576 (2010)
http://dx.doi.org/10.1364/OE.18.014568


View Full Text Article

Enhanced HTML    Acrobat PDF (7506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic gratings and photonic bandgap structures have been studied for decades in optical technologies. The translational invariance of periodic gratings gives rise to well-known angular and frequency filtering of the incident radiation resulting in well-defined scattered colors in response to broadband illumination. Here, we demonstrate the formation of highly complex structural color patterns, or colorimetric fingerprints, in two-dimensional (2D) deterministic aperiodic gratings using dark field scattering microscopy. The origin of colorimetric fingerprints is explained by rigorous full-wave numerical simulations based on the generalized Mie theory. We show that unlike periodic gratings, aperiodic nanopatterned surfaces feature a broadband frequency response with wide angular intensity distributions governed by the distinctive Fourier properties of the aperiodic structures. Finally, we will discuss a range of potential applications of colorimetric fingerprints for optical sensing and spectroscopy.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(290.4210) Scattering : Multiple scattering
(160.5298) Materials : Photonic crystals

ToC Category:
Scattering

History
Original Manuscript: April 6, 2010
Revised Manuscript: June 2, 2010
Manuscript Accepted: June 6, 2010
Published: June 23, 2010

Citation
Svetlana V. Boriskina, Sylvanus Y. K. Lee, Jason J. Amsden, Fiorenzo G. Omenetto, and Luca Dal Negro, "Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces," Opt. Express 18, 14568-14576 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton Univ Pr, 2008).
  3. A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. Fr. 31(6), 1–235 (2006). [CrossRef]
  4. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]
  5. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002). [CrossRef]
  6. S. V. Boriskina, A. Gopinath, and L. Dal Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16(23), 18813–18826 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-18813 . [CrossRef]
  7. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998). [CrossRef]
  8. X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001). [CrossRef]
  9. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005). [CrossRef] [PubMed]
  10. L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence,” Opt. Express 15(23), 15314–15323 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15314 . [CrossRef] [PubMed]
  11. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004). [CrossRef] [PubMed]
  12. M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).
  13. A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009). [CrossRef]
  14. S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009). [CrossRef]
  15. R. Lifshitz, “Quasicrystals: A matter of definition,” Found. Phys. 33(12), 1703–1711 (2003). [CrossRef]
  16. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003). [CrossRef] [PubMed]
  17. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  18. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000). [CrossRef]
  19. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006). [CrossRef]
  20. J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 . [CrossRef] [PubMed]
  21. M. R. Schroeder, Number theory in science and communication (Springer, 1985).
  22. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13499 . [CrossRef] [PubMed]
  23. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994). [CrossRef]
  24. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]
  25. V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001). [CrossRef]
  26. H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002). [CrossRef] [PubMed]
  27. E. M. Barber, Aperiodic structures in condensed matter: fundamentals and applications” (CRC Press, 2009)
  28. S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2684 KB)     
» Media 2: AVI (2684 KB)     
» Media 3: AVI (2684 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited