OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14762–14767

Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens

Wentao Song, Zheyu Fang, Shan Huang, Feng Lin, and Xing Zhu  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14762-14767 (2010)
http://dx.doi.org/10.1364/OE.18.014762


View Full Text Article

Enhanced HTML    Acrobat PDF (793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the near-field nanofocusing through a plasmonic lens containing a Bragg reflector and a converging lens, which consist of semitransparent annular grooves milled into a gold film with different periods along the radial direction. By illuminating the structure with a linearly polarized light, two tightly focal spots were detected by scanning near-field optical microscope. This plasmonic lens has considerably reduced direct light transmission, making the focal spots obvious. By raising the radius of half of every groove, one single spot was obtained. Furthermore, theoretical simulations prove that the light intensity of the focal spots can be doubled through adding the Bragg reflector surrounding the converging lens.

© 2010 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 23, 2010
Revised Manuscript: May 21, 2010
Manuscript Accepted: June 8, 2010
Published: June 25, 2010

Citation
Wentao Song, Zheyu Fang, Shan Huang, Feng Lin, and Xing Zhu, "Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens," Opt. Express 18, 14762-14767 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  5. Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010). [CrossRef]
  6. B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988). [CrossRef]
  7. Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009). [CrossRef]
  8. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  9. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  10. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  11. Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 . [CrossRef] [PubMed]
  12. Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008). [CrossRef]
  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  14. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002). [CrossRef]
  15. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003). [CrossRef] [PubMed]
  16. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).
  17. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).
  18. Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010). [CrossRef]
  19. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007). [CrossRef] [PubMed]
  20. L. Novotny, and B. Hecht, Principles of nano-optics; (Cambridge Univ. Press: Cambridge, MA, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited