OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14794–14801

Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths

Changchun Yan, Dao Hua Zhang, Yuan Zhang, Dongdong Li, and M. A. Fiddy  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14794-14801 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H -polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

© 2010 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(230.1360) Optical devices : Beam splitters
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 17, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 13, 2010
Published: June 25, 2010

Changchun Yan, Dao Hua Zhang, Yuan Zhang, Dongdong Li, and M. A. Fiddy, "Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths," Opt. Express 18, 14794-14801 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:. [CrossRef] [PubMed]
  5. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009). [CrossRef]
  6. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009). [CrossRef]
  7. Q. Cheng, and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159v1 (2009).
  8. C. Caloz, and T. Itoh, Electromagnetic Metamaterial, (IEEE Press, Wiley, Hoboken NJ, 2006).
  9. C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004). [CrossRef]
  10. C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004). [CrossRef]
  11. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008). [CrossRef]
  12. J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm . [CrossRef] [PubMed]
  13. X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003). [CrossRef]
  14. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29(6), 617–619 (2004), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/search.cfm . [CrossRef] [PubMed]
  15. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005). [CrossRef]
  16. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm . [CrossRef] [PubMed]
  17. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  18. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006). [CrossRef]
  19. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm . [CrossRef] [PubMed]
  20. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  21. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  22. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm . [CrossRef] [PubMed]
  23. L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007). [CrossRef]
  24. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm . [CrossRef] [PubMed]
  25. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009). [CrossRef] [PubMed]
  26. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef]
  27. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009). [CrossRef]
  28. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press: Orlando, 1985).
  31. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited