OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14913–14925

Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating

A. Barbara, S. Collin, Ch. Sauvan, J. Le Perchec, C. Maxime, J-L. Pelouard, and P. Quémerais  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14913-14925 (2010)
http://dx.doi.org/10.1364/OE.18.014913


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Commensurate gratings of deep-metallic grooves have highly localized cavity resonances which do not exist for purely periodic gratings. In this paper we present the experimental dispersion diagram of the resonances of a commensurate grating with three sub-wavelength cavities per period. We observe selective light localization within the cavities, transition from a localized to a delocalized mode and modifications of the coupling of modes with the external plane-wave that may lead to the generation of black modes. This unexpected complexity is analyzed via a theoretical study in full agreement with the experiments. These results open a way to the control of wavelength-dependent hot spot predicted in more complex commensurate gratings.

© 2010 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 25, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: June 23, 2010
Published: June 28, 2010

Citation
Aude Barbara, Stéphane Collin, Christophe Sauvan, Jérôme Le Perchec, Camille Maxime, Jean-Luc Pelouard, and Pascal Quémerais, "Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating," Opt. Express 18, 14913-14925 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14913


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kneipp, M. Moskovits, and H. Kneipp, ed., Surface-Enhanced Raman Scattering, Topics in Applied Physics, 103, (Springer, 2006). [CrossRef]
  2. A. Hessel and A. A. Oliner, “Wood’s anomaly effects on gratings of large amplitude,” Opt. Commun. 59, 327 (1986). [CrossRef]
  3. A. Wirgin, “Resonance scattering of electromagnetic waves from a rectangular groove on a metallic mirror,” Opt. Commun. 7(1), 70 (1973). [CrossRef]
  4. A. Wirgin and A. A. Maradudin, “Resonant response of a bare metallic grating to s-polarized light,” Prog. Surf. Sci. 22, 1 (1986) [CrossRef]
  5. A. Wirgin, and T. López-Ríos, “Can surface enhanced raman scattering be caused by waveguide resonances,” Opt. Commun. 48, 416 (1984); ibid. “Errata”, Opt. Commun. 49, 455 (1984). [CrossRef]
  6. E. Albano, S. Daiser, G. Ertl, R. Miranda, K. Wandelt, and N. Garcia, “Nature of surface-enhanced-Ramanscattering active sites on coldly condensed Ag films,” Phys. Rev. Lett. 51, 2314-2317 (1983). [CrossRef]
  7. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  8. S. Grésillon, L. Aigouy, A. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, and P. Gadenne, “Experimental observation of localized excitations in Random metal-dielectric films,” Phys. Rev. Lett. 82, 4520 (1999). [CrossRef]
  9. M. I. Stockman, S. V. Faleev, and D. J. Bergam, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett. 87, 167401 (2001). [CrossRef] [PubMed]
  10. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (NY) 203, 255 (1990). [CrossRef]
  11. T. A. Leskova, A. A. Maradudin, and J. Munoz-Lopez, “Coherence of light scattered from a randomly rough surface,” Phys. Rev. E 71, 036606 (2005). [CrossRef]
  12. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett. 72, 2486 (1994). [CrossRef] [PubMed]
  13. E. L. Albuquerque, and M. G. Cottamb, “Theory of elementary excitations in quasiperiodic structures,” Phys. Reports 376, 225 (2003). [CrossRef]
  14. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517 (2007). [CrossRef] [PubMed]
  15. A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16, 19127 (2008). [CrossRef]
  16. C. Berger, E. Belin, and D. Mayou, “Electronic properties of quasicrystals,” Ann. Chim.-Sci. Mat. (Paris) 18, 485 (1993).
  17. E. Belin and D. Mayou, “Electronic properties of quasicrystals,” Phys. Scr. T49, 356 (1993). [CrossRef]
  18. P. Quémerais, “Model of growth for long-range chemically ordered structures: application to quasicrystals,” J. Phys. I France 4, 1669 (1994). [CrossRef]
  19. F. Ducastelle and P. Quémerais, “Chemical self-organization during crystal growth,” Phys. Rev. Lett. 78, 102 (1997). [CrossRef]
  20. J. Le Perchec, P. Quémerais, A. Barbara and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006). [CrossRef] [PubMed]
  21. M. Navarro-Cía, D. Skigin, M. Beruete, and M. Sorolla, “Experimental observation of phase resonances in metallic compound gratings with subwavelength slits in the millimiter wave regime,” Appl. Phys. Lett. 94, 091107 (2009). [CrossRef]
  22. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J-L Pelouard, “Angle-resolved transmission measurements through anisotropic 2D plasmonic crystals,” Opt. Lett. 33, 165 (2008). [CrossRef] [PubMed]
  23. T. López-Ríos, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665 (1998). [CrossRef]
  24. A. Barbara, P. Quémerais, E. Bustarret, T. López-Ríos, and T. Fournier, “Electromagnetic resonances of subwavelength rectangular metallic gratings,” Eur. Phys. J. D. 23, 143-154 (2003). [CrossRef]
  25. D. Skigin and R. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. lett. 95, 217402 (2005) and references therein. [CrossRef] [PubMed]
  26. E. D. Palik, Handbook of optical constants of solids, Academic Press.
  27. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited