OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15244–15255

A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom

Marios A. Gavrielides, Lisa M. Kinnard, Kyle J. Myers, Jennifer Peregoy, William F. Pritchard, Rongping Zeng, Juan Esparza, John Karanian, and Nicholas Petrick  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15244-15255 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2535 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A number of interrelated factors can affect the precision and accuracy of lung nodule size estimation. To quantify the effect of these factors, we have been conducting phantom CT studies using an anthropomorphic thoracic phantom containing a vasculature insert to which synthetic nodules were inserted or attached. Ten repeat scans were acquired on different multi-detector scanners, using several sets of acquisition and reconstruction protocols and various nodule characteristics (size, shape, density, location). This study design enables both bias and variance analysis for the nodule size estimation task. The resulting database is in the process of becoming publicly available as a resource to facilitate the assessment of lung nodule size estimation methodologies and to enable comparisons between different methods regarding measurement error. This resource complements public databases of clinical data and will contribute towards the development of procedures that will maximize the utility of CT imaging for lung cancer screening and tumor therapy evaluation.

© 2010 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(110.7440) Imaging systems : X-ray imaging
(110.1758) Imaging systems : Computational imaging
(110.6955) Imaging systems : Tomographic imaging

Original Manuscript: November 18, 2009
Revised Manuscript: June 10, 2010
Manuscript Accepted: June 11, 2010
Published: July 2, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics
Imaging in Diagnosis and Treatment of Lung Cancer (2010) Optics Express

Marios A. Gavrielides, Lisa M. Kinnard, Kyle J. Myers, Jennifer Peregoy, William F. Pritchard, Rongping Zeng, Juan Esparza, John Karanian, and Nicholas Petrick, "A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom," Opt. Express 18, 15244-15255 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Therasse, S. G. Arbuck, E. A. Eisenhauer, J. Wanders, R. S. Kaplan, L. Rubinstein, J. Verweij, M. Van Glabbeke, A. T. van Oosterom, M. C. Christian, and S. G. Gwyther, “New guidelines to evaluate the response to treatment in solid tumors,” J. Natl. Cancer Inst. 92(3), 205–216 (2000). [CrossRef] [PubMed]
  2. E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij, “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” Eur. J. Cancer 45(2), 228–247 (2009). [CrossRef]
  3. C. C. Jaffe, “Measures of response: RECIST, WHO, and new alternatives,” J. Clin. Oncol. 24(20), 3245–3251 (2006). [CrossRef] [PubMed]
  4. M. A. Gavrielides, L. M. Kinnard, K. J. Myers, and N. Petrick, “Noncalcified lung nodules: volumetric assessment with thoracic CT,” Radiology 251(1), 26–37 (2009). [CrossRef] [PubMed]
  5. M. F. McNitt-Gray, L. M. Bidaut, S. G. Armato. III, C. R. Meyer, M. A. Gavrielides, C. P. Fenimore, G. McLennan, N. Petrick, B. Zhao, A. P. Reeves, R. Beichel, H.-J. G. Kim, and L. Kinnard, “CT assessment of response to therapy: tumor volume change measurement, truth data and error,” Translational Oncol. 2, 216–222 (2009).
  6. C. R. Meyer, S. G. Armato. III, C. P. Fenimore, G. McLennan, L. M. Bidaut, D. P. Barboriak, M. A. Gavrielides, E. F. Jackson, M. F. McNitt-Gray, P. E. Kinahan, N. Petrick, and B. Zhao, “Quantitative Imaging to assess tumor response to therapy: common themes, of measurement, truth data, and error sources,” Translational Oncol. 2, 198–210 (2009).
  7. M. Das, J. Ley-Zaporozhan, H. A. Gietema, A. Czech, G. Mühlenbruch, A. H. Mahnken, M. Katoh, A. Bakai, M. Salganicoff, S. Diederich, M. Prokop, H. U. Kauczor, R. W. Günther, and J. E. Wildberger, “Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners,” Eur. Radiol. 17(8), 1979–1984 (2007). [CrossRef] [PubMed]
  8. W. J. Kostis, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, “Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images,” IEEE Trans. Med. Imaging 22(10), 1259–1274 (2003). [CrossRef] [PubMed]
  9. L. M. Kinnard, M. A. Gavrielides, K. J. Myers, R. Zeng, J. Peregoy, W. Pritchard, J. Karanian, and N. Petrick, “Volume Error Analysis for Lung Nodules Attached to Bronchial Vessels in an Anthropomorphic Thoracic Phantom,” Proc. SPIE 6915, 69152Q (2008). [CrossRef]
  10. A. P. Reeves, A. C. Jirapatnakul, A. M. Biancardi, T. V. Apanasovich, C. Schaefer, J. J. Bowden, M. Kietzmann, R. Korn, M. Dillmann, Q. Li, J. Wang, J. H. Moltz, J. Kuhnigk, T. Hayashi, X. Zhou, H. Fujita, T. Duindam, B. v. Ginneken, R. Avila, J. P. Ko, K. Melamud, H. Rusinek, R. Wiemker, G. Soza, C. Tietjen, M. Thorn, M. F. McNitt-Gray, Y. Valenciaga, M. Khatonabadi, Y. Kawata, and N. Niki, “The VOLCANO'09 challenge: Preliminary results,” in Second International Workshop of Pulmonary Image Analysis, (2009), pp. 353–364.
  11. M. A. Gavrielides, R. Zeng, L. M. Kinnard, K. J. Myers, and N. Petrick, “A template-based approach for the analysis of lung nodules in a volumetric CT phantom study,” Proc. SPIE 7260, 726009 (2009). [CrossRef]
  12. M. A. Gavrielides, R. Zeng, L. M. Kinnard, K. J. Myers, and N. Petrick, “Information-theoretic approach for analyzing bias and variance in lung nodule size estimation with CT: a phantom study,” IEEE Trans. Med. Imaging . in press). [PubMed]
  13. R. Zeng, N. Petrick, M. A. Gavrielides, and K. J. Myers, “Approximations of noise structures in helical multi-detector CT scans: application to lung nodule volume estimation,” Proc. SPIE 7624, 762415 (2010). [CrossRef]
  14. C. I. Henschke, D. F. Yankelevitz, R. Mirtcheva, G. McGuinness, D. McCauley, O. S. Miettinen, and ELCAP Group, “CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules,” AJR Am. J. Roentgenol. 178(5), 1053–1057 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited