OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15531–15543

Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide

Qiang Li and Min Qiu  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15531-15543 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vertical directional coupling between a metal-insulator-metal (MIM) plasmonic waveguide and a conventional dielectric waveguide is investigated. The coupling length, extinction ratio, insertion loss and coupling efficiency of the hybrid coupler are analyzed. As an example, when the separation between the two waveguides is 250 nm, a maximum coupling efficiency of 73%, an insertion loss of −1.4 dB and an extinction ratio of 16 dB can be achieved at a coupling length of 4.5 µm at 1.55 µm wavelength. A particular feature of this hybrid coupler is that it is highly tolerant to the structural parameters of the plasmonic waveguide and the misalignment between the two waveguides. The performance of this hybrid coupler as a TM polarizer is also analyzed and a maximum extinction ratio of 44 dB and an insertion loss of −0.18 dB can be obtained. The application of this hybrid coupler includes the signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits and the polarization control between TE and TM modes. In addition, it provides an approach for efficiently exciting MIM plasmonic modes with conventional dielectric modes.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: May 21, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 1, 2010
Published: July 7, 2010

Qiang Li and Min Qiu, "Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Express 18, 15531-15543 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–665 (2008). [CrossRef]
  2. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106, 21045–21050 (2009). [CrossRef] [PubMed]
  3. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2010). [CrossRef]
  4. F. Liu, Y. Rao, Y. Huang, W. Zhang, and J. Peng, “Coupling between long range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 90, 141101 (2007). [CrossRef]
  5. D. K. Gramotnev, and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  6. G. Veronis, and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005). [CrossRef]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  8. S. Xiao, and N. A. Mortensen, “Resonant-tunneling-based crossing for subwavelength plasmonic slot waveguides,” Opt. Express 16, 14997–15005 (2008). [CrossRef] [PubMed]
  9. G. B. Hoffman, and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express 16, 12677–12687 (2008). [CrossRef] [PubMed]
  10. G. Veronis, and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008). [CrossRef] [PubMed]
  11. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef] [PubMed]
  12. G. Veronis, and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef] [PubMed]
  13. J. Tian, S. Q. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009). [CrossRef]
  14. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35, 649–651 (2010). [CrossRef] [PubMed]
  15. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35, 502–504 (2010). [CrossRef] [PubMed]
  16. N. N. Feng, and L. D. Negro, “Plasmon mode transformation in modulated-index metal-dielectric slot waveguides,” Opt. Lett. 32, 3086–3088 (2007). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  18. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973). [CrossRef]
  19. T. Nakano, K. Baba, and M. Miyagi, “Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis,” J. Opt. Soc. Am. B 11, 2030–2035 (1994). [CrossRef]
  20. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman &Hall, London, New York, 1983).
  21. A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009). [CrossRef]
  22. K. L. Chen, and S. Wang, “Cross-talk problems in optical directional couplers,” Appl. Phys. Lett. 44, 166 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited