OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16014–16024

Parallel scanning-optical nanoscopy with optically confined probes

Hsin-Yu Tsai, Samuel W. Thomas, III, and Rajesh Menon  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 16014-16024 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the imaging of sub-diffraction limited features using an optical probe generated by focusing a round spot at one wavelength, λ1 = 405nm, and a ring-shaped spot at a second wavelength, λ2 = 532nm, onto a thin photochromic layer that coats the nanostructures. Illumination at λ2 turns the photochromic layer opaque to λ1 everywhere except at the centre of the ring, where the illumination at λ1 penetrates and probes the underlying nanostructure. We confirm that this optically confined probe increases image contrast and is able to resolve features smaller than the far-field diffraction limit. Furthermore, by using an array of dual-wavelength diffractive microlenses, we demonstrate the feasibility of parallelizing this approach. Compared to previous approaches, our technique is not limited to fluorescence imaging.

© 2010 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: May 3, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 14, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Hsin-Yu Tsai, Samuel W. Thomas, and Rajesh Menon, "Parallel scanning-optical nanoscopy with optically confined probes," Opt. Express 18, 16014-16024 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9(1), 413–418 (1873). [CrossRef]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [CrossRef]
  4. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  5. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods 5(5), 417–423 (2008). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  8. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993). [CrossRef] [PubMed]
  9. H. G. Hansma, “Varieties of imaging with scanning probe microscopes,” Proc. Natl. Acad. Sci. U.S.A. 96(26), 14678–14680 (1999). [CrossRef] [PubMed]
  10. P. Bourgeat, F. Meriaudeau, K. W. Tobin, and P. Gorria, “Content based segmentation of patterned wafers,” J. Electron. Imaging 13(3), 428–435 (2004). [CrossRef]
  11. S. Tueber, A. Bzdurek, A. C. Durr, J. Heumann, and C. Holfeld, “Limitations of optical reticle inspection for 45-nm node and beyond,” Proc. SPIE 6349, 63490T/1–10 (2006).
  12. K. Huang, J. Lee, Y. Wen, and J. Opsal, “Application of scatterometry for evaluation of lithographic process and OPC model generation,” Proc. SPIE 5752, 536–545 (2005). [CrossRef]
  13. H. Hsu-Ting and F. L. Terry, “Spectroscopic ellipsometry and reflectometry from gratings (Scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 455–456, 828–836 (2004).
  14. Y. Choi, M. Kim, S. Oh, and O. Han, “CD measurement evaluation on periodic patterns between optic tools and CD-SEM,” Proc. SPIE 6349, 6491N/1–8 (2006).
  15. R. Menon and H. I. Smith, “Absorbance-modulation optical lithography,” J. Opt. Soc. Am. A 23(9), 2290–2294 (2006). [CrossRef]
  16. R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using absorbance modulation,” Phys. Rev. Lett. 98(4), 043905 (2007). [CrossRef] [PubMed]
  17. H.-Y. Tsai, G. W. Wallraff, and R. Menon, “Spatial-frequency multiplication via absorbance modulation,” Appl. Phys. Lett. 91(9), 094103 (2007). [CrossRef]
  18. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett. 33(24), 2916–2918 (2008). [CrossRef] [PubMed]
  19. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009). [CrossRef] [PubMed]
  20. R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26(2), 297–304 (2009). [CrossRef]
  21. D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, “Lithographic Patterning and Confocal Imaging with Zone Plates,” J. Vac. Sci. Technol. B 18(6), 2881–2885 (2000). [CrossRef]
  22. M.-S. Ho, A. Natansohn, C. Barrett, and P. Rochon, “Azo polymers for reversible optical storage. The effect of polarity of the azobenzene groups,” Can. J. Chem. 73(11), 1773–1778 (1995). [CrossRef]
  23. C. Barrett, A. Natansohn, and P. Rochon, “Cis-Trans Thermal Isomerization Rates of Bound and Doped Azobenzenes in a Series of Polymers,” Chem. Mater. 7(5), 899–903 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited