OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 16112–16119

Characterization of bending losses for curved plasmonic nanowire waveguides

Dirk Jan Dikken, Marko Spasenović, Ewold Verhagen, Dries van Oosten, and L. (Kobus) Kuipers  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16112-16119 (2010)
http://dx.doi.org/10.1364/OE.18.016112


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize bending losses of curved plasmonic nanowire waveguides for radii of curvature ranging from 1 to 12 μm and widths down to 40 nm. We use near-field measurements to separate bending losses from propagation losses. The attenuation due to bending loss is found to be as low as 0.1 μm−1 for a curved waveguide with a width of 70 nm and a radius of curvature of 2 μm. Experimental results are supported by Finite Difference Time Domain simulations. An analytical model developed for dielectric waveguides is used to predict the trend of rising bending losses with decreasing radius of curvature in plasmonic nanowires.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 20, 2010
Revised Manuscript: June 21, 2010
Manuscript Accepted: June 25, 2010
Published: July 15, 2010

Citation
Dirk Jan Dikken, Marko Spasenović, Ewold Verhagen, Dries van Oosten, and L. (Kobus) Kuipers, "Characterization of bending losses for curved plasmonic nanowire waveguides," Opt. Express 18, 16112-16119 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-16112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, “Plasmonics – Towards Subwavelength Optical Devices,” Curr. Nanosci. 1(1), 17–22 (2005). [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuactors B 54(1-2), 3–15 (1999). [CrossRef]
  3. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007). [CrossRef]
  4. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006). [CrossRef] [PubMed]
  5. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  6. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). [CrossRef] [PubMed]
  7. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008). [CrossRef] [PubMed]
  8. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  9. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86(19), 191104 (2005). [CrossRef]
  10. M. Ayre, T. J. Karle, T. Lijun Wu, T. Davies, and T. F. Krauss, “Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend,” IEEE J. Sel. Areas Commun. 23(7), 1390–1395 (2005). [CrossRef]
  11. I. Ntakis, P. Pottier, and R. M. De La Rue, “Optimization of transmission properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation,” J. Appl. Phys. 96(1), 12–18 (2004). [CrossRef]
  12. M. Lipson, “Guiding, modulating, and emitting light on Silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  13. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  14. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008). [CrossRef]
  15. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988) Vol. 3.
  16. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  17. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85(26), 6323–6325 (2004). [CrossRef]
  18. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006). [CrossRef]
  19. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  20. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  21. M. Spasenović, D. van Oosten, E. Verhagen, and L. Kuipers, “Measurements of modal symmetry in subwavelength plasmonic slot waveguides,” Appl. Phys. Lett. 95(20), 203109 (2009). [CrossRef]
  22. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  24. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008). [CrossRef] [PubMed]
  25. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007). [CrossRef]
  26. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  27. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009). [CrossRef] [PubMed]
  28. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001). [CrossRef]
  29. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009). [CrossRef] [PubMed]
  30. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002). [PubMed]
  31. E. A. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103 (1969).
  32. R. G. Hunsperger, Integrated Optics: Theory and Technology (4th ed., Springer-Verlag, Berlin Heidelberg, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited